Suppr超能文献

利用过去的全球变暖趋势对未来亚马逊地区气候变化导致的碳损失进行的紧急限制。

Emergent constraints on future Amazon climate change-induced carbon loss using past global warming trends.

作者信息

Melnikova Irina, Yokohata Tokuta, Ito Akihiko, Nishina Kazuya, Tachiiri Kaoru, Shiogama Hideo

机构信息

Earth System Division, National Institute for Environmental Studies (NIES), Tsukuba, Japan.

Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.

出版信息

Nat Commun. 2024 Sep 19;15(1):7623. doi: 10.1038/s41467-024-51474-8.

Abstract

Reducing uncertainty in the response of the Amazon rainforest, a vital component of the Earth system, to future climate change is crucial for refining climate projections. Here we demonstrate an emergent constraint (EC) on the future response of the Amazon carbon cycle to climate change across CMIP6 Earth system models. Models that overestimate past global warming trends, tend to estimate hotter and drier future Amazon conditions, driven by northward shifts of the intertropical convergence zone over the Atlantic Ocean, causing greater Amazon carbon loss. The proposed EC changes the mean CMIP6 Amazon climate-induced carbon loss estimate (excluding CO fertilisation and land-use change impacts) from -0.27 (-0.59-0.05) to -0.16 (-0.42-0.10) GtC year at 4.4 °C warming level, reducing the variance by 34%. This study implies that climate-induced carbon loss in the Amazon rainforest by 2100 is less than thought and that past global temperature trends can be used to refine regional carbon cycle projections.

摘要

减少地球系统的重要组成部分——亚马逊雨林对未来气候变化的响应中的不确定性,对于完善气候预测至关重要。在此,我们展示了一种针对CMIP6地球系统模型中亚马逊碳循环对气候变化的未来响应的新出现的约束(EC)。高估过去全球变暖趋势的模型,往往会预测未来亚马逊地区更炎热、更干燥的状况,这是由大西洋上热带辐合带向北移动所驱动的,会导致亚马逊地区更大的碳损失。所提出的这种约束将CMIP6模型中因亚马逊地区气候导致的碳损失估计平均值(不包括二氧化碳施肥和土地利用变化的影响),在升温4.4°C水平下从-0.27(-0.59至-0.05)GtC/年变为-0.16(-0.42至-0.10)GtC/年,方差减少了34%。这项研究表明,到2100年亚马逊雨林因气候导致的碳损失比之前认为的要少,并且过去的全球温度趋势可用于完善区域碳循环预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d450/11412974/5ec8555f9bc8/41467_2024_51474_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验