Suppr超能文献

相似文献

1
Large-scale map of RNA-binding protein interactomes across the mRNA life cycle.
Mol Cell. 2024 Oct 3;84(19):3790-3809.e8. doi: 10.1016/j.molcel.2024.08.030. Epub 2024 Sep 19.
2
Large-scale map of RNA binding protein interactomes across the mRNA life-cycle.
bioRxiv. 2023 Jun 8:2023.06.08.544225. doi: 10.1101/2023.06.08.544225.
3
Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle.
Mol Cell. 2024 May 2;84(9):1764-1782.e10. doi: 10.1016/j.molcel.2024.03.012. Epub 2024 Apr 8.
4
Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein-protein interaction network.
Brain Res. 2016 Sep 15;1647:79-93. doi: 10.1016/j.brainres.2016.02.047. Epub 2016 Mar 12.
5
RNA-dependent interactome allows network-based assignment of RNA-binding protein function.
Nucleic Acids Res. 2023 Jun 9;51(10):5162-5176. doi: 10.1093/nar/gkad245.
6
Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on 3'UTRs in cisplatin treated cells.
RNA Biol. 2020 Jan;17(1):33-46. doi: 10.1080/15476286.2019.1662268. Epub 2019 Sep 16.
7
mRNA interactome capture in mammalian cells.
Methods. 2017 Aug 15;126:38-43. doi: 10.1016/j.ymeth.2017.07.006. Epub 2017 Jul 11.
9
An Interaction Network of RNA-Binding Proteins Involved in Oogenesis.
Mol Cell Proteomics. 2020 Sep;19(9):1485-1502. doi: 10.1074/mcp.RA119.001912. Epub 2020 Jun 17.
10
Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes.
Cell Rep. 2017 Aug 1;20(5):1187-1200. doi: 10.1016/j.celrep.2017.06.091.

引用本文的文献

1
ERH promotes primary microRNA processing beyond cluster assistance.
Nat Commun. 2025 Aug 25;16(1):7913. doi: 10.1038/s41467-025-63015-y.
3
Phosphoglycerate dehydrogenase stabilizes protein kinase C delta type mRNA to promote hepatocellular carcinoma progression.
Signal Transduct Target Ther. 2025 Jul 18;10(1):236. doi: 10.1038/s41392-025-02304-w.
4
A molecular cartographer's toolkit for mapping RNA's uncharted realms.
Cell Rep. 2025 Jul 22;44(7):115877. doi: 10.1016/j.celrep.2025.115877. Epub 2025 Jun 19.
5
Decoding the interactions and functions of non-coding RNA with artificial intelligence.
Nat Rev Mol Cell Biol. 2025 Jun 19. doi: 10.1038/s41580-025-00857-w.
6
Dysregulated RNA-binding proteins and alternative splicing: Emerging roles in autism spectrum disorder.
Mol Cells. 2025 Jun 3;48(8):100237. doi: 10.1016/j.mocell.2025.100237.
7
Neuronal aging causes mislocalization of splicing proteins and unchecked cellular stress.
Nat Neurosci. 2025 Jun;28(6):1174-1184. doi: 10.1038/s41593-025-01952-z. Epub 2025 Jun 2.
8
A lncRNA-mediated metabolic rewiring of cell senescence.
Cell Rep. 2025 Jun 24;44(6):115747. doi: 10.1016/j.celrep.2025.115747. Epub 2025 May 21.
9
RNA-binding proteins: it's better to play in a band.
Genes Dev. 2025 Mar 3;39(5-6):301-303. doi: 10.1101/gad.352667.125.
10
Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2317860121. doi: 10.1073/pnas.2317860121. Epub 2024 Nov 4.

本文引用的文献

1
HydRA: Deep-learning models for predicting RNA-binding capacity from protein interaction association context and protein sequence.
Mol Cell. 2023 Jul 20;83(14):2595-2611.e11. doi: 10.1016/j.molcel.2023.06.019. Epub 2023 Jul 7.
2
Skipper analysis of eCLIP datasets enables sensitive detection of constrained translation factor binding sites.
Cell Genom. 2023 May 4;3(6):100317. doi: 10.1016/j.xgen.2023.100317. eCollection 2023 Jun 14.
3
Structural basis of catalytic activation in human splicing.
Nature. 2023 May;617(7962):842-850. doi: 10.1038/s41586-023-06049-w. Epub 2023 May 10.
4
Dosage sensitivity to Pumilio1 variants in the mouse brain reflects distinct molecular mechanisms.
EMBO J. 2023 Jun 1;42(11):e112721. doi: 10.15252/embj.2022112721. Epub 2023 Apr 18.
5
RNA-dependent interactome allows network-based assignment of RNA-binding protein function.
Nucleic Acids Res. 2023 Jun 9;51(10):5162-5176. doi: 10.1093/nar/gkad245.
6
mRNA recognition and packaging by the human transcription-export complex.
Nature. 2023 Apr;616(7958):828-835. doi: 10.1038/s41586-023-05904-0. Epub 2023 Apr 5.
7
UniProt: the Universal Protein Knowledgebase in 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531. doi: 10.1093/nar/gkac1052.
8
Metadensity: a background-aware python pipeline for summarizing CLIP signals on various transcriptomic sites.
Bioinform Adv. 2022 Nov 10;2(1):vbac083. doi: 10.1093/bioadv/vbac083. eCollection 2022.
9
CORUM: the comprehensive resource of mammalian protein complexes-2022.
Nucleic Acids Res. 2023 Jan 6;51(D1):D539-D545. doi: 10.1093/nar/gkac1015.
10
ERH: a plug-and-play protein important for gene silencing and cell cycle progression.
FEBS J. 2023 Feb;290(3):688-691. doi: 10.1111/febs.16669. Epub 2022 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验