Zhong Yujie, Sun Fuwei, Zhong Shuncong, Huang Yi, Lin Jiewen, Zhang Qiukun, Deng Yaosen, Lin Tingling, Zeng Qiuming, Huang Yonglin, Zhong Jianfeng, Guan Chenglong, Tu Shantung, Wu Minghong
Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, P. R. China.
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Adv Mater. 2025 Sep;37(37):e2503607. doi: 10.1002/adma.202503607. Epub 2025 Jun 20.
Active absorption modulation is critical for advanced stealth technologies, especially given the emerging detection threat from terahertz atmospheric windows. However, due to the difficulty in balancing high absorption and tunability, the actual manufacturing of most terahertz absorbers usually neglects the integration of electrical tuning, which limits their development of dynamic wave trapping for electronic countermeasure systems. Here, a terahertz stealth metamaterial (TSM) with hierarchical ionotronic architecture is proposed to overcome the tradeoff. Large-area continuous MoS assemblies tightly attached poly(ionic liquid) (PIL) microarrays provide enough conditions for surface electron conduction and plasmon mode excitation. By establishing wave-electron-ion interaction pathways, the directional migration of free anions inside the PIL and the accumulation of excess charge carriers up to 100.4% at the MoS interfaces are promoted, thereby stimulating changes in the plasma frequency of the absorption system. Consequently, this micro-nano structural design enhances the absorption tunability and combines multiple dissipative behaviors. TSM exhibit high specific attenuation (-275 dB mm), frequency agility (21.4%), and phase switching (153.1 deg.) within terahertz atmospheric windows. Moreover, the template-assisted assembly strategy adopted has the potential to be used for the building of universal blocks operating within other frequency ranges.
主动吸收调制对于先进的隐身技术至关重要,特别是考虑到来自太赫兹大气窗口的新兴探测威胁。然而,由于难以平衡高吸收率和可调谐性,大多数太赫兹吸收器的实际制造通常忽略了电调谐的集成,这限制了它们在电子对抗系统中动态波捕获的发展。在此,提出了一种具有分级离子电子结构的太赫兹隐身超材料(TSM)来克服这种权衡。紧密附着在聚离子液体(PIL)微阵列上的大面积连续MoS组件为表面电子传导和等离子体模式激发提供了足够的条件。通过建立波-电子-离子相互作用路径,促进了PIL内部自由阴离子的定向迁移以及在MoS界面处多余电荷载流子的积累,最高可达100.4%,从而刺激了吸收系统等离子体频率的变化。因此,这种微纳结构设计增强了吸收可调谐性,并结合了多种耗散行为。TSM在太赫兹大气窗口内表现出高比衰减(-275 dB/mm)、频率捷变(21.4%)和相位切换(153.1°)。此外,所采用的模板辅助组装策略有潜力用于构建在其他频率范围内工作的通用模块。