Suppr超能文献

人工智能助力资源匮乏地区的眼保健:评估印度用于糖尿病视网膜病变筛查的人工智能模型的预测准确性。

Artificial intelligence for advancing eye care in resource-poor settings: Assessing the predictive accuracy of an AI-model for diabetic retinopathy screening in India.

作者信息

Chawla Rohan, Karkhanis Prachi, Shah Malay, Das Aritra, Sharma Rishabh, Almaula Dhwani, Venkatesh Pradeep, Singh Harsh Vardhan, Kumar Mukul, Samanta Ramanuj, Kumarl Vinod, Shah Amar, Vadera Bhavin, Jain Nakul, Sen Akanksha, Shreedhar Shyamsundar, Garg Vipin, Dhaval Soma, Ganesh Kowshik, Rana Srinivas, Tandon Radhika

机构信息

All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.

Wadhwani AI, LORDS EDUCATION & HEALTH SOCIETY (LEHS), 70, Ring Road, 2nd Floor, Lajpat Nagar-III, New Delhi 110024, India.

出版信息

Glob Epidemiol. 2025 Jun 4;9:100209. doi: 10.1016/j.gloepi.2025.100209. eCollection 2025 Jun.

Abstract

BACKGROUND

Timely identification and treatment of Diabetic Retinopathy (DR) is critical in avoiding vision loss. DR screening is challenging, especially in resource-limited areas where trained ophthalmologists are scarce. AI solutions show promise in addressing this challenge. In this study, the performance metrics of an AI solution (MadhuNetrAI) developed in India was evaluated for referring and grading DR.

METHODS

MadhuNetrAI was developed de novo by the All India Institute of Medical Sciences (AIIMS) and Wadhwani AI (WIAI). It was tested on 1078 fundus images (from AIIMS Delhi and an unannotated subset of publicly available EyePACS images) against two ophthalmologists and an adjudicator serving as independent gold-standard annotators, wherein the disease status of the patients remained unknown.

FINDINGS

MadhuNetrAI demonstrated high sensitivity (93·2 %; CI: 89·5 %-95·6 %) and specificity (95·3 %; CI: 93·7 %-96·6 %) in detecting referable DR (moderate, severe, proliferative DR). The area-under-the-curve for referring DR against the gold standard was 0·97 (CI: 0·95-0·99) indicating excellent diagnostic performance. The agreement in grading DR severity was high (kappa = 0·89, CI: 0·86-0·91). The model performed comparably in detecting DR too.

INTERPRETATION

MadhuNetrAI's ability to grade DR severity and identify referrable cases could bring DR patients to care much earlier. Further research and clinical trials are needed to ensure its reliability and generalizability across diverse populations and image qualities.

FUNDING

MadhuNetrAI was developed by technical and programmatic teams at WIAI, with inputs and contributions by the clinical team at AIIMS, and funded by USAID. The authors have no financial or non-financial conflicts of interest to disclose.

摘要

背景

及时识别和治疗糖尿病视网膜病变(DR)对于避免视力丧失至关重要。DR筛查具有挑战性,尤其是在资源有限且缺乏训练有素的眼科医生的地区。人工智能解决方案在应对这一挑战方面显示出前景。在本研究中,对印度开发的一种人工智能解决方案(MadhuNetrAI)用于DR转诊和分级的性能指标进行了评估。

方法

MadhuNetrAI由全印度医学科学研究所(AIIMS)和瓦德瓦尼人工智能(WIAI)从头开发。它在1078张眼底图像(来自德里AIIMS以及公开可用的EyePACS图像的一个未注释子集)上进行了测试,对照两名眼科医生和一名充当独立金标准注释者的裁定者,其中患者的疾病状态未知。

研究结果

MadhuNetrAI在检测可转诊的DR(中度、重度、增殖性DR)方面表现出高灵敏度(93.2%;置信区间:89.5%-95.6%)和特异性(95.3%;置信区间:93.7%-96.6%)。针对金标准转诊DR的曲线下面积为0.97(置信区间:0.95-0.99),表明诊断性能优异。DR严重程度分级的一致性很高(kappa=0.89,置信区间:0.86-0.91)。该模型在检测DR方面表现也相当。

解读

MadhuNetrAI对DR严重程度进行分级并识别可转诊病例的能力可以使DR患者更早得到治疗。需要进一步的研究和临床试验来确保其在不同人群和图像质量中的可靠性和通用性。

资金来源

MadhuNetrAI由WIAI的技术和项目团队开发,AIIMS的临床团队提供了投入和贡献,并由美国国际开发署资助。作者没有财务或非财务利益冲突需要披露。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ef/12177155/5f9859aae0be/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验