Suppr超能文献

基于形态连接组的用于脑疾病诊断的双多图谱表示对齐

DUAL MULTI-ATLAS REPRESENTATION ALIGNMENT FOR BRAIN DISORDER DIAGNOSIS USING MORPHOLOGICAL CONNECTOME.

作者信息

Han Kangfu, Hu Dan, Cheng Jiale, Liu Tianming, Bozoki Andrea, Zhu Dajiang, Li Gang

机构信息

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

School of Computing, University of Georgia, Athens, GA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981287. Epub 2025 May 12.

Abstract

In structural magnetic resonance imaging (MRI), morphological connectome plays an important role in capturing coordinated patterns of region-wise morphological features for brain disorder diagnosis. However, significant challenges remain in aggregating diverse representations from multiple brain atlases, stemming from variations in the definition of regions of interest. To effectively integrate complementary information from multiple atlases while mitigating possible biases, we propose a novel dual multi-atlas representation alignment approach (DMAA) for brain disorder diagnosis. Specifically, we first minimize the maximum mean discrepancy of multi-atlas representations to align them into a unified distribution, reducing inter-atlas variability and enhancing effective feature fusion. Then, to further manage the anatomical variability, we apply optimal transport to capture and harmonize region-wise differences, preserving plausible relationships across atlases. Extensive experiments on ADNI, PPMI, ADHD200, and SchizConnect datasets demonstrate the effectiveness of our proposed DMAA on brain disorder diagnosis using multi-atlas morphological connectome.

摘要

在结构磁共振成像(MRI)中,形态连接组在捕捉区域形态特征的协调模式以用于脑部疾病诊断方面发挥着重要作用。然而,由于感兴趣区域定义的差异,在聚合来自多个脑图谱的不同表示时仍存在重大挑战。为了有效整合来自多个图谱的互补信息,同时减轻可能的偏差,我们提出了一种用于脑部疾病诊断的新型双多图谱表示对齐方法(DMAA)。具体而言,我们首先最小化多图谱表示的最大均值差异,将它们对齐到统一分布,减少图谱间的变异性并增强有效特征融合。然后,为了进一步处理解剖变异性,我们应用最优传输来捕捉并协调区域差异,保留图谱间合理的关系。在ADNI、PPMI、ADHD200和SchizConnect数据集上进行的大量实验证明了我们提出的DMAA在使用多图谱形态连接组进行脑部疾病诊断方面的有效性。

相似文献

1
DUAL MULTI-ATLAS REPRESENTATION ALIGNMENT FOR BRAIN DISORDER DIAGNOSIS USING MORPHOLOGICAL CONNECTOME.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981287. Epub 2025 May 12.
2
Multi-atlas ensemble graph neural network model for major depressive disorder detection using functional MRI data.
Front Comput Neurosci. 2025 Jun 9;19:1537284. doi: 10.3389/fncom.2025.1537284. eCollection 2025.
4
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
5
Intramuscular versus oral corticosteroids to reduce relapses following discharge from the emergency department for acute asthma.
Cochrane Database Syst Rev. 2018 Jun 2;6(6):CD012629. doi: 10.1002/14651858.CD012629.pub2.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
Serum C-reactive protein, procalcitonin, and lactate dehydrogenase for the diagnosis of pancreatic necrosis.
Cochrane Database Syst Rev. 2017 Apr 21;4(4):CD012645. doi: 10.1002/14651858.CD012645.
9
Harmonization of Structural Brain Connectivity Through Distribution Matching.
Hum Brain Mapp. 2025 Jun 15;46(9):e70257. doi: 10.1002/hbm.70257.

本文引用的文献

1
Toward individualized connectomes of brain morphology.
Trends Neurosci. 2024 Feb;47(2):106-119. doi: 10.1016/j.tins.2023.11.011. Epub 2023 Dec 22.
2
Deep Fusion of Multi-Template Using Spatio-Temporal Weighted Multi-Hypergraph Convolutional Networks for Brain Disease Analysis.
IEEE Trans Med Imaging. 2024 Feb;43(2):860-873. doi: 10.1109/TMI.2023.3325261. Epub 2024 Feb 2.
3
Robust estimation of cortical similarity networks from brain MRI.
Nat Neurosci. 2023 Aug;26(8):1461-1471. doi: 10.1038/s41593-023-01376-7. Epub 2023 Jul 17.
4
Regional Radiomics Similarity Networks Reveal Distinct Subtypes and Abnormality Patterns in Mild Cognitive Impairment.
Adv Sci (Weinh). 2022 Apr;9(12):e2104538. doi: 10.1002/advs.202104538. Epub 2022 Jan 31.
5
Rethinking Maximum Mean Discrepancy for Visual Domain Adaptation.
IEEE Trans Neural Netw Learn Syst. 2023 Jan;34(1):264-277. doi: 10.1109/TNNLS.2021.3093468. Epub 2023 Jan 5.
6
A multi-modal parcellation of human cerebral cortex.
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
7
Consistent reconstruction of cortical surfaces from longitudinal brain MR images.
Neuroimage. 2012 Feb 15;59(4):3805-20. doi: 10.1016/j.neuroimage.2011.11.012. Epub 2011 Nov 15.
8
An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
Neuroimage. 2006 Jul 1;31(3):968-80. doi: 10.1016/j.neuroimage.2006.01.021. Epub 2006 Mar 10.
9
Automatically parcellating the human cerebral cortex.
Cereb Cortex. 2004 Jan;14(1):11-22. doi: 10.1093/cercor/bhg087.
10
Cortical surface-based analysis. I. Segmentation and surface reconstruction.
Neuroimage. 1999 Feb;9(2):179-94. doi: 10.1006/nimg.1998.0395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验