Suppr超能文献

具有增强机械强度和生物活性的3D生物打印组织工程骨:通过序贯免疫调节特性加速骨缺损修复

3D Bioprinted Tissue-Engineered Bone with Enhanced Mechanical Strength and Bioactivities: Accelerating Bone Defect Repair through Sequential Immunomodulatory Properties.

作者信息

Liu Daqian, Liu Jingsong, Zhao Pengcheng, Peng Zhibin, Geng Zhibin, Zhang Jingwei, Zhang Zhuoran, Shen Ruifang, Li Xiang, Wang Xiaoyu, Li Shuangzuo, Wang Jiankai, Wang Xintao

机构信息

Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, P. R. China.

Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, 148 Baojian Road, Harbin, 150001, P. R. China.

出版信息

Adv Healthc Mater. 2024 Dec;13(30):e2401919. doi: 10.1002/adhm.202401919. Epub 2024 Aug 18.

Abstract

In this study, a new-generation tissue-engineered bone capable of temporally regulating the immune response, balancing proinflammatory and anti-inflammatory activities, and facilitating bone regeneration and repair to address the challenges of delayed healing and nonunion in large-sized bone defects, is innovatively developed. Using the innovative techniques including multiphysics-assisted combined decellularization, side-chain biochemical modification, and sterile freeze-drying, a novel photocurable extracellular matrix hydrogel, methacrylated bone-derived decellularized extracellular matrix (bdECM-MA), is synthesized. After incorporating the bdECM-MA with silicon-substituted calcium phosphate and bone marrow mesenchymal stem cells, the tissue-engineered bone is fabricated through digital light processing 3D bioprinting. This study provides in vitro confirmation that the engineered bone maintains high cellular viability while achieving MPa-level mechanical strength. Moreover, this engineered bone exhibits excellent osteogenesis, angiogenesis, and immunomodulatory functions. One of the molecular mechanisms of the immunomodulatory function involves the inhibition of the p38-MAPK pathway. A pioneering in vivo discovery is that the natural biomaterial-based tissue-engineered bone demonstrates sequential immunomodulatory properties that activate proinflammatory and anti-inflammatory responses in succession, significantly accelerating the repair of bone defects. This study provides a new research basis and an effective method for developing autogenous bone substitute materials and treating large-sized bone defects.

摘要

在本研究中,创新性地开发了一种新一代组织工程骨,其能够暂时调节免疫反应,平衡促炎和抗炎活性,并促进骨再生和修复,以应对大型骨缺损延迟愈合和骨不连的挑战。利用包括多物理场辅助联合脱细胞、侧链生化修饰和无菌冷冻干燥等创新技术,合成了一种新型光固化细胞外基质水凝胶,即甲基丙烯酸化骨源性脱细胞细胞外基质(bdECM-MA)。将bdECM-MA与硅取代磷酸钙和骨髓间充质干细胞混合后,通过数字光处理3D生物打印制造组织工程骨。本研究提供了体外证实,该工程骨在达到兆帕级机械强度的同时保持了高细胞活力。此外,这种工程骨表现出优异的成骨、血管生成和免疫调节功能。免疫调节功能的分子机制之一涉及对p38-MAPK途径的抑制。一项开创性的体内发现是,基于天然生物材料的组织工程骨表现出顺序免疫调节特性,依次激活促炎和抗炎反应,显著加速骨缺损的修复。本研究为开发自体骨替代材料和治疗大型骨缺损提供了新的研究基础和有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验