Espay Alberto J, Sturchio Andrea, Imarisio Alberto, Hill Emily J, Williamson Brady, Montemagno Kora, Hoffmann Christian, Roy Hugo Le, Milovanovic Dragomir, Manfredsson Fredric P
James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA.
Section of Neurology, Karolinska Institutet, Stockholm, Sweden.
Bioessays. 2025 Aug;47(8):e70030. doi: 10.1002/bies.70030. Epub 2025 Jun 20.
Protein aggregation is a normal response to age-related exposures. According to the thermodynamic hypothesis of protein folding, soluble proteins precipitate into amyloids (pathology) under supersaturated conditions through a process similar to crystallization. This soluble-to-insoluble phase transition occurs via nucleation and may be catalyzed by ectopic surfaces such as lipid nanoparticles, microbes, or chemical pollutants. The increasing prevalence of these exposures with age correlates with the rising incidence of pathology over the lifespan. However, the formation of amyloid fibrils does not inherently cause neurodegeneration. Neurodegeneration emerges when the levels of functional monomeric proteins, from which amyloids form, fall below a critical threshold. The preservation of monomeric proteins may explain neurological resilience, regardless of the extent of amyloid deposition. This biophysical framework challenges the traditional clinicopathological view that considers amyloids intrinsically toxic, despite the absence of a known mechanism of toxicity. Instead, it suggests that chronic exposures driving persistent nucleation consume monomeric proteins as they aggregate. In normal aging, replacement matches loss; in accelerated aging, it does not. A biophysical approach to neurodegenerative diseases has important therapeutic implications, refocusing treatment strategies from removing pathology to restoring monomeric protein homeostasis above the threshold needed to sustain normal brain function.
蛋白质聚集是对与年龄相关的暴露的一种正常反应。根据蛋白质折叠的热力学假说,可溶性蛋白质在过饱和条件下通过类似于结晶的过程沉淀为淀粉样蛋白(病理学上的)。这种从可溶到不溶的相变通过成核作用发生,并且可能由异位表面如脂质纳米颗粒、微生物或化学污染物催化。随着年龄增长,这些暴露的发生率增加,与一生中病理学发病率的上升相关。然而,淀粉样纤维的形成本身并不一定会导致神经退行性变。当形成淀粉样蛋白的功能性单体蛋白水平降至临界阈值以下时,神经退行性变就会出现。单体蛋白的保存可能解释了神经弹性,而与淀粉样蛋白沉积的程度无关。这个生物物理框架挑战了传统的临床病理学观点,即认为淀粉样蛋白本质上有毒,尽管目前还没有已知的毒性机制。相反,它表明驱动持续成核的慢性暴露在聚集时会消耗单体蛋白。在正常衰老过程中,替换与损失相匹配;在加速衰老过程中,则不然。神经退行性疾病的生物物理方法具有重要的治疗意义,将治疗策略从消除病理学改变重新聚焦到恢复单体蛋白稳态,使其高于维持正常脑功能所需的阈值。