Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria.
Nano Lett. 2023 Dec 13;23(23):10796-10801. doi: 10.1021/acs.nanolett.3c02915. Epub 2023 Oct 20.
Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.
真核细胞含有与膜结合和无膜的细胞器,这些细胞器通常彼此接触。无膜细胞器的界面特性如何调节它们与膜的相互作用仍然难以评估。在这里,我们使用基于石墨烯的传感器来研究突触结合蛋白 1 的静电特性,突触结合蛋白 1 是一种主要的突触磷酸蛋白,无论是在单相还是经历相分离形成突触结合蛋白凝聚物后。使用这些基于石墨烯的传感器,我们发现突触结合蛋白凝聚物会产生强烈的电响应,而当突触结合蛋白呈单相存在时,这种电响应则不存在。通过引入原子薄的介电阻挡层,我们表明电响应源自双电层,其形成控制着突触结合蛋白凝聚物和石墨烯之间的相互作用。我们的数据表明,当蛋白质处于单相状态与处于生物分子凝聚物中时,相同蛋白质的界面特性有很大差异,揭示了凝聚物在其界面处可以容纳离子势能差。