Wang Xian, Guang Wenfeng, Lu Yunpeng
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371.
J Chem Phys. 2025 Jun 21;162(23). doi: 10.1063/5.0268147.
Twisted multilayer graphene (TMG) capped with hexagonal boron nitride (hBN) exhibits distinctive electronic phenomena under a vertical electric field. However, the dielectric constant alone is insufficient to comprehensively characterize the dielectric properties of low-dimensional materials, posing challenges for accurately measuring and controlling their field response. To address this, we develop a site-specific polarizability decomposition approach based on first-principles calculations, enabling the separation of intra- and interlayer polarizabilities in TMG@hBN. This method is applied to 2580 constructed configurations of TMG flakes with and without hBN encapsulation. Our findings reveal that intralayer polarizability dominates the overall magnitude, while the interlayer component governs its variation with twist angle. hBN encapsulation enhances interlayer polarizability while reducing its twist-angle dependence. For both TMG and TMG@hBN, the inner graphene layers exhibit negligible γ, which quantifies the layer-specific interlayer charge transfer response to an external field, while significant γ values emerge in the outermost graphene layers (γGra) and hBN (γBN). Interestingly, γGra and γBN exhibit opposite signs in non-equivalent layers, and γGra reverses between pristine TMG and TMG@hBN. Compared to TMG, γGra in TMG@hBN is suppressed, with variations strongly dependent on thickness, twist angle, and stacking patterns, particularly when nitrogen atoms align over phenyl ring centers. In addition to the well-known Bernal-stacked structure, notable changes in interlayer polarizability and γGra are also observed in slightly misaligned (AA)N-stacked structures with the exceptional twist angle (θp). This scalable method enables layer-resolved analysis of intra- and interlayer contributions, offering new insights for tuning electric field responses and optimizing graphene-based optoelectronic devices.
用六方氮化硼(hBN)覆盖的扭曲多层石墨烯(TMG)在垂直电场下表现出独特的电子现象。然而,仅介电常数不足以全面表征低维材料的介电特性,这给精确测量和控制它们的场响应带来了挑战。为了解决这个问题,我们基于第一性原理计算开发了一种位点特异性极化率分解方法,能够分离TMG@hBN中的层内和层间极化率。该方法应用于2580个有和没有hBN封装的TMG薄片的构建构型。我们的研究结果表明,层内极化率主导了整体大小,而层间分量则控制其随扭曲角的变化。hBN封装增强了层间极化率,同时降低了其对扭曲角的依赖性。对于TMG和TMG@hBN,内部石墨烯层的γ值可忽略不计,γ值量化了层特异性层间电荷转移对外加场的响应,而在最外层石墨烯层(γGra)和hBN(γBN)中出现了显著的γ值。有趣的是,在不等价层中γGra和γBN呈现相反的符号,并且γGra在原始TMG和TMG@hBN之间发生反转。与TMG相比,TMG@hBN中的γGra受到抑制,其变化强烈依赖于厚度、扭曲角和堆叠模式,特别是当氮原子与苯环中心对齐时。除了众所周知的伯纳尔堆叠结构外,在具有特殊扭曲角(θp)的轻微错位(AA)N堆叠结构中也观察到层间极化率和γGra的显著变化。这种可扩展的方法能够对层内和层间贡献进行层分辨分析,为调整电场响应和优化基于石墨烯的光电器件提供了新的见解。