Yu Donghu, Ding Qihang, Xiang Chunbai, Wang Danwen, Hu Lei, Wang Junneng, Qian Kun, Cheng Zhen, Li Zhiqiang
Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
Department of Chemistry, Korea University, Seoul 02841, Korea.
ACS Nano. 2025 Jul 1;19(25):22900-22913. doi: 10.1021/acsnano.5c01541. Epub 2025 Jun 20.
Glioblastoma (GBM), a highly aggressive and lethal brain tumor, presents a formidable clinical challenge due to its poor prognosis and lack of effective treatment options, underscoring the urgent need for innovative therapeutic strategies. Here, we report a promising phototheranostic platform based on a near-infrared II (NIR-II) organic molecule, MYM, which combines robust fluorescence with potent photothermal and photodynamic therapeutic capabilities. To maximize efficacy, MYM was encapsulated in exosomes derived from 293F cells and further functionalized with the iRGD peptide, enhancing both tumor targeting and penetration of the blood-brain barrier (MYM@iRGD-Exo). , studies demonstrate that MYM@iRGD-Exo can effectively penetrate the blood-brain barrier and selectively target GBM cells. Upon laser irradiation, it significantly inhibits tumor progression while promoting T-cell infiltration to enhance the immune response. Comprehensive RNA sequencing analyses revealed the activation of immune response pathways, highlighting the potential of this system to modulate antitumor immunity. This study offers an effective approach to glioblastoma therapy by integrating precision-targeted delivery, multimodal imaging, and synergistic therapeutic effects. The findings provide a theranostics platform aimed at overcoming current treatment limitations and improving clinical outcomes for cancer.
胶质母细胞瘤(GBM)是一种极具侵袭性和致命性的脑肿瘤,因其预后不良且缺乏有效的治疗选择而带来了严峻的临床挑战,这凸显了对创新治疗策略的迫切需求。在此,我们报告了一种基于近红外II(NIR-II)有机分子MYM的有前景的光诊疗平台,该分子兼具强大的荧光以及有效的光热和光动力治疗能力。为了使疗效最大化,MYM被封装在源自293F细胞的外泌体中,并进一步用iRGD肽进行功能化修饰,从而增强肿瘤靶向性和血脑屏障穿透能力(MYM@iRGD-Exo)。研究表明,MYM@iRGD-Exo能够有效穿透血脑屏障并选择性地靶向GBM细胞。在激光照射下,它能显著抑制肿瘤进展,同时促进T细胞浸润以增强免疫反应。全面的RNA测序分析揭示了免疫反应途径的激活,突出了该系统调节抗肿瘤免疫的潜力。本研究通过整合精准靶向递送、多模态成像和协同治疗效果,为胶质母细胞瘤治疗提供了一种有效方法。这些发现提供了一个旨在克服当前治疗局限性并改善癌症临床结果的诊疗平台。