Vicente Cláudia M, Boutilliat Alexis, Hôtel Laurence, Paris Cédric, Aigle Bertrand
Université de Lorraine, INRAE, DynAMic, 54000 Nancy, France.
Université de Lorraine, LIBio, 54000 Nancy, France.
Microbiology (Reading). 2025 Jun;171(6). doi: 10.1099/mic.0.001576.
Kinamycin biosynthesis is a complex process that has been extensively studied over the years, yet specific enzymatic steps continue to be unveiled. A diazo group present in the molecule is responsible for the promising antitumour activity of kinamycins, but its installation in the specific strain has yet to be characterized. In this study, we explore the diazo functionalization of kinamycin in this strain. A FAD-dependent monooxygenase is identified, which is essential for kinamycin biosynthesis. In its absence, stealthin C accumulates instead, likely as a pathway shunt product. Furthermore, as a result of the position of the gene encoding this monooxygenase, named , we also propose new boundaries of the kinamycin biosynthetic gene cluster, resulting in a large cluster spanning over 72 kb. This work paves the way for the continued understanding of the biosynthetic steps that are characteristic of diazo-containing natural products and provides new biocatalysts for molecular engineering and accelerates bioactive compounds production.
金霉素的生物合成是一个复杂的过程,多年来已被广泛研究,但具体的酶促步骤仍在不断被揭示。分子中存在的一个重氮基团赋予了金霉素有前景的抗肿瘤活性,但其在特定菌株中的引入过程尚未得到表征。在本研究中,我们探索了该菌株中金霉素的重氮化官能化。我们鉴定出一种依赖黄素腺嘌呤二核苷酸(FAD)的单加氧酶,它对金霉素的生物合成至关重要。在缺乏该酶的情况下,隐秘素C会积累,可能是作为一种途径分流产物。此外,由于编码这种单加氧酶(命名为 )的基因的位置,我们还提出了金霉素生物合成基因簇的新边界,形成了一个跨越超过72 kb的大基因簇。这项工作为持续理解含重氮天然产物特有的生物合成步骤铺平了道路,并为分子工程提供了新的生物催化剂,加速了生物活性化合物的生产。