Suppr超能文献

通过优化机器学习算法提高脓毒症相关急性呼吸窘迫综合征患者的早期死亡率预测:SAFE-Mo的开发与多数据库验证

Enhancing early mortality prediction for sepsis-associated acute respiratory distress syndrome patients via optimized machine learning algorithm: development and multiple databases' validation of the SAFE-Mo.

作者信息

Jiang Luofeng, Yu Chuting, Xie Chaoran, Zheng Yongjun, Xia Zhaofan

机构信息

Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China.

Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai 200433, China.

出版信息

Int J Surg. 2025 Jun 20. doi: 10.1097/JS9.0000000000002741.

Abstract

BACKGROUND

Acute respiratory distress syndrome (ARDS) is associated with high mortality, with sepsis accounts for 31-34% of cases. Given the global burden of sepsis (508 cases per 100,000 person-years) and its association with 20% of all global deaths, early mortality prediction in patients with sepsis-associated ARDS is critical. This study developed and validated the Sepsis-associated ARDS Fatality Evaluation Model (SAFE-Mo), a machine learning model designed to predict early mortality in sepsis-associated ARDS patients, enabling earlier identification of high-risk individuals.

METHODS

Data were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV, v3.0), eICU Collaborative Research Database (eICU CRD, v2.0), and Northwest ICU (NWICU, v0.1.0) using Structured Query Language. SAFE-Mo was constructed using machine learning algorithm (svmRadialSigma) focusing on median survival days among deceased patients as the primary outcome. The model's performance was validated externally using the MIMIC-IV and eICU CRD database and compared against four commonly used clinical risk assessment models (acute physiology score III (APSIII), simplified acute physiology score II (SAPS II), sequential organ failure assessment (SOFA), charlson comorbidity index (CCI)). Additionally, NWICU was used to further validate SAFE-Mo's generalization. Discrimination, calibration, and clinical utility were evaluated using area under the curve (AUC), Decision Curve Analysis (DCA), and calibration curves.

RESULTS

SAFE-Mo demonstrated superior predictive capability of early mortality compared to traditional models. It showed the largest reasonable risk threshold probability range and highest net benefit. Calibration curves indicated a slight overestimation of mortality risk overall. With our simple SAFE-Mo web page, SAFE-Mo can assist clinicians in identifying high-risk patients early, like patients with unusually high levels of lactate in sepsis-associated ARDS, assessing prognosis, and facilitating risk-adjusted comparisons of center-specific outcomes. Practical advantages include guiding personalized treatment strategies, determining the need for aggressive interventions, and optimizing resource utilization.

CONCLUSION

This study utilized the MIMIC-IV, eICU CRD, and NWICU databases to construct and validate a machine learning model, SAFE-Mo, which predicts early mortality in patients with sepsis-associated ARDS and outperforms traditional prediction models across all metrics. SAFE-Mo can guide clinicians to focus on critical indicators such as lactate, urine output, anion gap, and others, enabling appropriate measures to improve clinical outcomes for high-risk patients.

摘要

背景

急性呼吸窘迫综合征(ARDS)的死亡率很高,其中脓毒症占病例的31%-34%。鉴于全球脓毒症负担(每10万人年508例)及其与全球所有死亡人数的20%相关,脓毒症相关ARDS患者的早期死亡率预测至关重要。本研究开发并验证了脓毒症相关ARDS死亡评估模型(SAFE-Mo),这是一种机器学习模型,旨在预测脓毒症相关ARDS患者的早期死亡率,以便更早地识别高危个体。

方法

使用结构化查询语言从重症监护医学信息数据库IV(MIMIC-IV,v3.0)、电子重症监护病房协作研究数据库(eICU CRD,v2.0)和西北重症监护病房(NWICU,v0.1.0)中提取数据。SAFE-Mo使用机器学习算法(svmRadialSigma)构建,将死亡患者的中位生存天数作为主要结局。该模型的性能在外部使用MIMIC-IV和eICU CRD数据库进行验证,并与四种常用的临床风险评估模型(急性生理学评分III(APSIII)、简化急性生理学评分II(SAPS II)、序贯器官衰竭评估(SOFA)、查尔森合并症指数(CCI))进行比较。此外,NWICU用于进一步验证SAFE-Mo的泛化能力。使用曲线下面积(AUC)、决策曲线分析(DCA)和校准曲线评估区分度、校准度和临床实用性。

结果

与传统模型相比时,SAFE-Mo显示出卓越的早期死亡率预测能力。它显示出最大的合理风险阈值概率范围和最高的净效益。校准曲线表明总体上对死亡风险有轻微高估。通过我们简单的SAFE-Mo网页,SAFE-Mo可以帮助临床医生早期识别高危患者,如脓毒症相关ARDS中乳酸水平异常高的患者,评估预后,并促进中心特异性结局的风险调整比较。实际优势包括指导个性化治疗策略、确定积极干预的必要性以及优化资源利用。

结论

本研究利用MIMIC-IV、eICU CRD和NWICU数据库构建并验证了机器学习模型SAFE-Mo,该模型可预测脓毒症相关ARDS患者的早期死亡率,并且在所有指标上均优于传统预测模型。SAFE-Mo可以指导临床医生关注乳酸、尿量、阴离子间隙等关键指标,以便采取适当措施改善高危患者的临床结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验