Suppr超能文献

预测脓毒症相关急性呼吸窘迫综合征的死亡率:一种使用MIMIC-III数据库的机器学习方法。

Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database.

作者信息

Mu Shengtian, Yan Dongli, Tang Jie, Zheng Zhen

机构信息

Department of Intensive Care Unit, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.

出版信息

J Intensive Care Med. 2025 Mar;40(3):294-302. doi: 10.1177/08850666241281060. Epub 2024 Sep 5.

Abstract

BackgroundTo develop and validate a mortality prediction model for patients with sepsis-associated Acute Respiratory Distress Syndrome (ARDS).MethodsThis retrospective cohort study included 2466 patients diagnosed with sepsis and ARDS within 24 h of ICU admission. Demographic, clinical, and laboratory parameters were extracted from Medical Information Mart for Intensive Care III (MIMIC-III) database. Feature selection was performed using the Boruta algorithm, followed by the construction of seven ML models: logistic regression, Naive Bayes, k-nearest neighbor, support vector machine, decision tree, Random Forest, and extreme gradient boosting. Model performance was evaluated using the area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.ResultsThe study identified 24 variables significantly associated with mortality. The optimal ML model, a Random Forest model, demonstrated an AUC of 0.8015 in the test set, with high accuracy and specificity. The model highlighted the importance of blood urea nitrogen, age, urine output, Simplified Acute Physiology Score II, and albumin levels in predicting mortality.ConclusionsThe model's superior predictive performance underscores the potential for integrating advanced analytics into clinical decision-making processes, potentially improving patient outcomes and resource allocation in critical care settings.

摘要

背景

开发并验证脓毒症相关急性呼吸窘迫综合征(ARDS)患者的死亡率预测模型。

方法

这项回顾性队列研究纳入了2466例在重症监护病房(ICU)入院24小时内被诊断为脓毒症和ARDS的患者。从重症监护医学信息集市三期(MIMIC-III)数据库中提取人口统计学、临床和实验室参数。使用Boruta算法进行特征选择,随后构建7种机器学习模型:逻辑回归、朴素贝叶斯、k近邻、支持向量机、决策树、随机森林和极端梯度提升。使用受试者工作特征曲线下面积、准确率、灵敏度、特异度、阳性预测值和阴性预测值评估模型性能。

结果

该研究确定了24个与死亡率显著相关的变量。最佳机器学习模型——随机森林模型在测试集中的曲线下面积为0.8015,具有较高的准确率和特异度。该模型突出了血尿素氮、年龄、尿量、简化急性生理学评分II和白蛋白水平在预测死亡率方面的重要性。

结论

该模型卓越的预测性能强调了将高级分析整合到临床决策过程中的潜力,这可能会改善危重症环境下的患者预后和资源分配。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验