Suppr超能文献

通过高阶协方差矩阵分解进行高效上位性推断。

Efficient epistasis inference via higher-order covariance matrix factorization.

作者信息

Shimagaki Kai S, Barton John P

机构信息

Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

Genetics. 2025 Jun 20. doi: 10.1093/genetics/iyaf118.

Abstract

Epistasis can profoundly influence evolutionary dynamics. Temporal genetic data, consisting of sequences sampled repeatedly from a population over time, provides a unique resource to understand how epistasis shapes evolution. However, detecting epistatic interactions from sequence data is technically challenging. Existing methods for identifying epistasis are computationally demanding, limiting their applicability to real-world data. Here, we present a novel computational method for inferring epistasis that substantially reduces computational costs without sacrificing accuracy. We validated our approach in simulations and applied it to study HIV-1 evolution over multiple years in a data set of 16 individuals. There we observed a strong excess of negative epistatic interactions between beneficial mutations, especially mutations involved in immune escape. Our method is general and could be used to characterize epistasis in other large data sets.

摘要

上位性可深刻影响进化动态。时间遗传数据由随时间从种群中反复采样的序列组成,为理解上位性如何塑造进化提供了独特资源。然而,从序列数据中检测上位性相互作用在技术上具有挑战性。现有的识别上位性的方法对计算要求很高,限制了它们对实际数据的适用性。在此,我们提出一种用于推断上位性的新型计算方法,该方法在不牺牲准确性的情况下大幅降低了计算成本。我们在模拟中验证了我们的方法,并将其应用于研究16名个体的数据集多年来的HIV-1进化。在那里,我们观察到有益突变之间,尤其是参与免疫逃逸的突变之间,存在大量负上位性相互作用。我们的方法具有通用性,可用于表征其他大数据集中的上位性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验