Kim Hyong S, Santana Gustavo Madeira, Sancer Gizem, Emonet Thierry, Jeanne James M
Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA.
Curr Biol. 2025 Jul 7;35(13):3146-3162.e8. doi: 10.1016/j.cub.2025.05.051. Epub 2025 Jun 19.
To enable diverse sensory processing and behavior, central circuits use divergent connectivity to create parallel pathways. However, linking synaptic and cellular mechanisms to the circuit-level segregation of computation has been challenging. Here, we investigate the generation of parallel processing pathways in the Drosophila olfactory system, where glomerular projection neurons (PNs) diverge onto many lateral horn neurons (LHNs). We compare the effects of a single PN's activity on two of its target LHNs. One LHN type generates sustained responses to odor and adapts divisively. The other generates transient responses and adapts subtractively. The distinct odor-coding dynamics originate from differences in the dynamics of PN synapses targeting each LHN type. Sustained LHN responses arise from synapses that recover from depression quickly enough to maintain ongoing transmission. Divisive adaptation is due to slow cellular gain control implemented by the Na/K ATPase in the postsynaptic neuron. Transient LHN responses arise from synapses that recover from depression too slowly to maintain ongoing transmission but that also facilitate when PN spike rate increases. Interfering with facilitation via the calcium buffer EGTA or interfering with the presynaptic priming factor Unc13B diminishes the magnitude of initial transient responses. Subtractive adaptation is due to the nonlinearity imposed by the spike threshold in the postsynaptic neuron. Transient LHNs make corresponding transient contributions to behavioral odor attraction in walking flies, whereas sustained LHNs may make sustained, but nuanced, contributions. Subcellular presynaptic specialization is thus a compact and efficient way to originate parallel information streams for specialized computation and behavior.
为实现多样化的感觉处理和行为,中枢神经回路利用发散性连接来创建并行通路。然而,将突触和细胞机制与计算的回路层面分离联系起来一直具有挑战性。在这里,我们研究果蝇嗅觉系统中并行处理通路的产生,在该系统中,小球状投射神经元(PNs)发散到许多侧角神经元(LHNs)上。我们比较单个PN的活动对其两个目标LHN的影响。一种LHN类型对气味产生持续反应并进行除法适应。另一种产生瞬态反应并进行减法适应。不同的气味编码动态源于针对每种LHN类型的PN突触动态的差异。持续的LHN反应源于能够从抑制中快速恢复以维持持续传递的突触。除法适应是由于突触后神经元中的钠/钾ATP酶实施的缓慢细胞增益控制。瞬态LHN反应源于从抑制中恢复过慢而无法维持持续传递但在PN尖峰率增加时也会促进的突触。通过钙缓冲剂EGTA干扰促进作用或干扰突触前引发因子Unc13B会减小初始瞬态反应的幅度。减法适应是由于突触后神经元中的尖峰阈值施加的非线性。瞬态LHN对行走果蝇的行为气味吸引做出相应的瞬态贡献,而持续的LHN可能做出持续但细微的贡献。因此,亚细胞突触前特化是为专门的计算和行为产生并行信息流的一种紧凑而有效的方式。