Suppr超能文献

不同的突触动力学在嗅觉回路中产生用于计算和行为的平行通路。

Divergent synaptic dynamics originate parallel pathways for computation and behavior in an olfactory circuit.

作者信息

Kim Hyong S, Santana Gustavo Madeira, Sancer Gizem, Emonet Thierry, Jeanne James M

机构信息

Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA.

出版信息

Curr Biol. 2025 Jul 7;35(13):3146-3162.e8. doi: 10.1016/j.cub.2025.05.051. Epub 2025 Jun 19.

Abstract

To enable diverse sensory processing and behavior, central circuits use divergent connectivity to create parallel pathways. However, linking synaptic and cellular mechanisms to the circuit-level segregation of computation has been challenging. Here, we investigate the generation of parallel processing pathways in the Drosophila olfactory system, where glomerular projection neurons (PNs) diverge onto many lateral horn neurons (LHNs). We compare the effects of a single PN's activity on two of its target LHNs. One LHN type generates sustained responses to odor and adapts divisively. The other generates transient responses and adapts subtractively. The distinct odor-coding dynamics originate from differences in the dynamics of PN synapses targeting each LHN type. Sustained LHN responses arise from synapses that recover from depression quickly enough to maintain ongoing transmission. Divisive adaptation is due to slow cellular gain control implemented by the Na/K ATPase in the postsynaptic neuron. Transient LHN responses arise from synapses that recover from depression too slowly to maintain ongoing transmission but that also facilitate when PN spike rate increases. Interfering with facilitation via the calcium buffer EGTA or interfering with the presynaptic priming factor Unc13B diminishes the magnitude of initial transient responses. Subtractive adaptation is due to the nonlinearity imposed by the spike threshold in the postsynaptic neuron. Transient LHNs make corresponding transient contributions to behavioral odor attraction in walking flies, whereas sustained LHNs may make sustained, but nuanced, contributions. Subcellular presynaptic specialization is thus a compact and efficient way to originate parallel information streams for specialized computation and behavior.

摘要

为实现多样化的感觉处理和行为,中枢神经回路利用发散性连接来创建并行通路。然而,将突触和细胞机制与计算的回路层面分离联系起来一直具有挑战性。在这里,我们研究果蝇嗅觉系统中并行处理通路的产生,在该系统中,小球状投射神经元(PNs)发散到许多侧角神经元(LHNs)上。我们比较单个PN的活动对其两个目标LHN的影响。一种LHN类型对气味产生持续反应并进行除法适应。另一种产生瞬态反应并进行减法适应。不同的气味编码动态源于针对每种LHN类型的PN突触动态的差异。持续的LHN反应源于能够从抑制中快速恢复以维持持续传递的突触。除法适应是由于突触后神经元中的钠/钾ATP酶实施的缓慢细胞增益控制。瞬态LHN反应源于从抑制中恢复过慢而无法维持持续传递但在PN尖峰率增加时也会促进的突触。通过钙缓冲剂EGTA干扰促进作用或干扰突触前引发因子Unc13B会减小初始瞬态反应的幅度。减法适应是由于突触后神经元中的尖峰阈值施加的非线性。瞬态LHN对行走果蝇的行为气味吸引做出相应的瞬态贡献,而持续的LHN可能做出持续但细微的贡献。因此,亚细胞突触前特化是为专门的计算和行为产生并行信息流的一种紧凑而有效的方式。

相似文献

1
Divergent synaptic dynamics originate parallel pathways for computation and behavior in an olfactory circuit.
Curr Biol. 2025 Jul 7;35(13):3146-3162.e8. doi: 10.1016/j.cub.2025.05.051. Epub 2025 Jun 19.
3
Odor encoding by fine-timescale spike synchronization patterns in the olfactory bulb.
J Neurophysiol. 2025 Jul 1;134(1):274-286. doi: 10.1152/jn.00340.2024. Epub 2025 Jun 14.
4
A circuit supporting concentration-invariant odor perception in Drosophila.
J Biol. 2009;8(1):9. doi: 10.1186/jbiol108. Epub 2009 Jan 26.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
Interventions for the prevention of persistent post-COVID-19 olfactory dysfunction.
Cochrane Database Syst Rev. 2022 Sep 5;9(9):CD013877. doi: 10.1002/14651858.CD013877.pub3.
8
Adult-neurogenesis allows for representational stability and flexibility in early olfactory system.
bioRxiv. 2024 Jul 4:2024.07.02.601573. doi: 10.1101/2024.07.02.601573.
9
Pain management for women in labour: an overview of systematic reviews.
Cochrane Database Syst Rev. 2012 Mar 14;2012(3):CD009234. doi: 10.1002/14651858.CD009234.pub2.

本文引用的文献

1
Driver lines for studying associative learning in .
Elife. 2025 Jan 29;13:RP94168. doi: 10.7554/eLife.94168.
2
Generating parallel representations of position and identity in the olfactory system.
Cell. 2023 Jun 8;186(12):2556-2573.e22. doi: 10.1016/j.cell.2023.04.038. Epub 2023 May 25.
3
Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments.
PLoS Comput Biol. 2023 May 11;19(5):e1010606. doi: 10.1371/journal.pcbi.1010606. eCollection 2023 May.
4
Odour motion sensing enhances navigation of complex plumes.
Nature. 2022 Nov;611(7937):754-761. doi: 10.1038/s41586-022-05423-4. Epub 2022 Nov 9.
5
Different priming states of synaptic vesicles underlie distinct release probabilities at hippocampal excitatory synapses.
Neuron. 2022 Dec 21;110(24):4144-4161.e7. doi: 10.1016/j.neuron.2022.09.035. Epub 2022 Oct 18.
6
Parallel encoding of CO in attractive and aversive glomeruli by selective lateral signaling between olfactory afferents.
Curr Biol. 2022 Oct 10;32(19):4225-4239.e7. doi: 10.1016/j.cub.2022.08.025. Epub 2022 Sep 6.
7
A neural circuit for wind-guided olfactory navigation.
Nat Commun. 2022 Aug 8;13(1):4613. doi: 10.1038/s41467-022-32247-7.
8
SLEAP: A deep learning system for multi-animal pose tracking.
Nat Methods. 2022 Apr;19(4):486-495. doi: 10.1038/s41592-022-01426-1. Epub 2022 Apr 4.
10
Circuits for integrating learned and innate valences in the insect brain.
Elife. 2021 Nov 10;10:e62567. doi: 10.7554/eLife.62567.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验