Daniels Kim, Vonck Sharona, Robijns Jolien, Spooren Annemie, Hansen Dominique, Bonnechère Bruno
Centre of Expertise in Care Innovation, Department of PXL-Healthcare, PXL University College, Hasselt, Belgium
REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium.
BMJ Open. 2025 May 24;15(5):e095769. doi: 10.1136/bmjopen-2024-095769.
INTRODUCTION: Physical activity (PA) is crucial for older adults' well-being and mitigating health risks. Encouraging active lifestyles requires a deeper understanding of the factors influencing PA, which conventional approaches often overlook by assuming stability in these determinants over time. However, individual-level determinants fluctuate over time in real-world settings. Digital phenotyping (DP), employing data from personal digital devices, enables continuous, real-time quantification of behaviour in natural settings. This approach offers ecological and dynamic assessments into factors shaping individual PA patterns within their real-world context. This paper presents a study protocol for the DP of PA behaviour among community-dwelling older adults aged 65 years and above. METHODS AND ANALYSIS: This 2-week multidimensional assessment combines supervised (self-reported questionnaires, clinical assessments) and unsupervised methods (continuous wearable monitoring and ecological momentary assessment (EMA)). Participants will wear a Garmin Vivosmart V.5 watch, capturing 24/7 data on PA intensity, step count and heart rate. EMA will deliver randomised prompts four times a day via the Smartphone Ecological Momentary Assessment application, collecting real-time self-reports on physical and mental health, motivation, efficacy and contextual factors. All measurements align with the Behaviour Change Wheel framework, assessing capability, opportunity and motivation. Machine learning will analyse data, employing unsupervised learning (eg, hierarchical clustering) to identify PA behaviour patterns and supervised learning (eg, recurrent neural networks) to predict behavioural influences. Temporal patterns in PA and EMA responses will be explored for intraday and interday variability, with follow-up durations optimised through random sliding window analysis, with statistical significance evaluated in RStudio at a threshold of 0.05. ETHICS AND DISSEMINATION: The study has been approved by the ethical committee of Hasselt University (B1152023000011). The findings will be presented at scientific conferences and published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT06094374.
引言:身体活动对老年人的幸福和降低健康风险至关重要。鼓励积极的生活方式需要更深入地了解影响身体活动的因素,而传统方法往往因假定这些决定因素随时间保持稳定而忽略了这一点。然而,在现实世界中,个体层面的决定因素会随时间波动。数字表型分析(DP)利用个人数字设备的数据,能够在自然环境中对行为进行连续、实时的量化。这种方法为在现实世界背景下塑造个体身体活动模式的因素提供了生态和动态评估。本文介绍了一项针对65岁及以上社区居住老年人身体活动行为数字表型分析的研究方案。 方法与分析:这项为期两周的多维评估结合了有监督(自我报告问卷、临床评估)和无监督方法(持续可穿戴监测和生态瞬时评估(EMA))。参与者将佩戴佳明Vivosmart V.5手表,全天候收集身体活动强度、步数和心率数据。EMA将通过智能手机生态瞬时评估应用程序每天随机推送四次提示,收集关于身心健康、动机、效能和情境因素的实时自我报告。所有测量均符合行为改变轮框架,评估能力、机会和动机。机器学习将分析数据,采用无监督学习(如层次聚类)来识别身体活动行为模式,并采用有监督学习(如循环神经网络)来预测行为影响。将探索身体活动和EMA反应中的时间模式,以分析日内和日间变异性,并通过随机滑动窗口分析优化随访持续时间,在RStudio中以0.05的阈值评估统计显著性。 伦理与传播:该研究已获得哈瑟尔特大学伦理委员会批准(B1152023000011)。研究结果将在科学会议上展示,并发表在同行评审期刊上。 试验注册号:NCT06094374。
Cochrane Database Syst Rev. 2017-5-23
Health Technol Assess. 2001
Front Public Health. 2024-1-8
Lancet Digit Health. 2023-6
Health Promot Int. 2023-6-1
J Neuroeng Rehabil. 2022-9-7