文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新型壳聚糖聚乙二醇与聚吡咯/炭黑薄膜的可调物理性质及染料去除应用

Tunable physical properties and dye removal application of novel Chitosan Polyethylene glycol and polypyrrole/carbon black films.

作者信息

El-Khiyami Sh S, Ali Heba, Ismail A M, Hafez R S

机构信息

Physics Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt.

Physical Chemistry Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt.

出版信息

Sci Rep. 2025 Jun 20;15(1):20124. doi: 10.1038/s41598-025-04429-y.


DOI:10.1038/s41598-025-04429-y
PMID:40542025
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12181404/
Abstract

In this study, polypyrrole/carbon black (PPy/C) filler with different amounts (5, 10, 15, and 20 wt%) was immobilized in a polymer blend consisting of chitosan/polyethylene glycol (CS/PEG) to produce conductive and dye adsorbent films. The study employed various distinctive techniques, including X-ray diffraction, Fourier transform infrared, and high-resolution scanning electron microscope, indicating that composites have high complexity and good interaction. Through the implementation of the UV-Vis technique, it has been observed that the reflectance of composites experiences enhancement with an increase in PPy/C content. The discussion covers the optical constants, such as the composites' refractive index and optical conductivity. Notably, the uniform dispersion of PPy/C has caused a significant rise in the electrical conductivity of the pristine blend from 1.182 × 10 (Ω.cm) to 1.42 × 10 (Ω.cm) when 15% PPy/C was added. This increased conductivity is attributable to correlated barrier-hopping mechanisms. The effects of increasing PPy/C quantity, contact time (0-260 min), initial MO dye concentration (20-120 mg/L), adsorbent film dosage (0.1, 0.25, 0.5, 0.75, and 1 g/L), and the initial pH (4-10) were examined. Incorporating PPy/C up to 10% improved the removal effectiveness of the composite film. The 10% PPy/C film exhibited the maximum removal effectiveness relative to other films. Langmuir showed better conventionality than the Freundlich isotherm model with R of 0.999. The maximal adsorption capacity observed in monolayer adsorption was determined to be 217 mg/g. The adsorption of MO by the 10% PPy/C film is a chemisorption process, according to the parameters of the kinetic studies. (CS/PEG)- (PPy/C) films could be assigned to the synergistic dye adsorption effect of PPy/C filler and CS/PEG polymer-making material, ensuring excellent adsorption efficiency. Because of these appealing characteristics, PPy/C has the potential to be an environmentally friendly adsorbent in the treatment of dye wastewater.

摘要

在本研究中,将不同含量(5%、10%、15%和20%重量)的聚吡咯/炭黑(PPy/C)填料固定在由壳聚糖/聚乙二醇(CS/PEG)组成的聚合物共混物中,以制备导电和染料吸附膜。该研究采用了各种独特的技术,包括X射线衍射、傅里叶变换红外光谱和高分辨率扫描电子显微镜,表明复合材料具有高度复杂性和良好的相互作用。通过紫外可见技术的应用,观察到复合材料的反射率随着PPy/C含量的增加而增强。讨论涵盖了光学常数,如复合材料的折射率和光导率。值得注意的是,当添加15%的PPy/C时,PPy/C的均匀分散使原始共混物的电导率从1.182×10(Ω·cm)显著提高到1.42×10(Ω·cm)。这种电导率的增加归因于相关的势垒跳跃机制。研究了增加PPy/C含量、接触时间(0 - 260分钟)、初始甲基橙(MO)染料浓度(20 - 120毫克/升)、吸附膜用量(0.1、0.25、0.5、0.75和1克/升)以及初始pH值(4 - 10)的影响。加入高达10%的PPy/C可提高复合膜的去除效果。相对于其他膜,10% PPy/C膜表现出最大的去除效果。朗缪尔等温线模型比弗伦德里希等温线模型具有更好的拟合度,相关系数R为0.999。单层吸附中观察到的最大吸附容量确定为217毫克/克。根据动力学研究参数,10% PPy/C膜对MO的吸附是一个化学吸附过程。(CS/PEG)-(PPy/C)膜可归因于PPy/C填料和CS/PEG聚合物材料的协同染料吸附作用,确保了优异的吸附效率。由于这些吸引人的特性,PPy/C有潜力成为处理染料废水的环保吸附剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/41307ec66cca/41598_2025_4429_Sch2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/709360cfc193/41598_2025_4429_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/22f53795b660/41598_2025_4429_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/98b6fffa408b/41598_2025_4429_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/7f77d189c98b/41598_2025_4429_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/2abb7dce181b/41598_2025_4429_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/b313a9b3b2db/41598_2025_4429_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/36a199b8a2c8/41598_2025_4429_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/e5381689fcf5/41598_2025_4429_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/96f001110b06/41598_2025_4429_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/02f45f370643/41598_2025_4429_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/0118eef8142f/41598_2025_4429_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/3b8b564f0bfd/41598_2025_4429_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/41307ec66cca/41598_2025_4429_Sch2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/709360cfc193/41598_2025_4429_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/22f53795b660/41598_2025_4429_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/98b6fffa408b/41598_2025_4429_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/7f77d189c98b/41598_2025_4429_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/2abb7dce181b/41598_2025_4429_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/b313a9b3b2db/41598_2025_4429_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/36a199b8a2c8/41598_2025_4429_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/e5381689fcf5/41598_2025_4429_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/96f001110b06/41598_2025_4429_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/02f45f370643/41598_2025_4429_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/0118eef8142f/41598_2025_4429_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/3b8b564f0bfd/41598_2025_4429_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/073a/12181404/41307ec66cca/41598_2025_4429_Sch2_HTML.jpg

相似文献

[1]
Tunable physical properties and dye removal application of novel Chitosan Polyethylene glycol and polypyrrole/carbon black films.

Sci Rep. 2025-6-20

[2]
Adsorption Performance of Zn(II)-Based Coordination Polymer (ZnMOF) Reinforced Magnetic Activated Biochar (CmBC-FeO@ZnMOF) Hybrid Composites.

Water Environ Res. 2025-6

[3]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[4]
Removal of fluoride from aqueous solution using high surface area activated carbon derived from fish scale solid waste.

Environ Sci Pollut Res Int. 2025-6

[5]
Sertindole for schizophrenia.

Cochrane Database Syst Rev. 2005-7-20

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[8]
NiO-biomass microcomposite for the phytoremediation of methylene blue from wastewater.

Int J Phytoremediation. 2025-6-19

[9]
Comparison of cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease.

Cochrane Database Syst Rev. 2001

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

本文引用的文献

[1]
Polypyrrole-decorated bentonite magnetic nanocomposite: A green approach for adsorption of anionic methyl orange and cationic crystal violet dyes from contaminated water.

Environ Res. 2024-4-15

[2]
Adsorption Kinetics of Methyl Orange from Model Polluted Water onto N-Doped Activated Carbons Prepared from N-Containing Polymers.

Polymers (Basel). 2023-4-22

[3]
Development of Hybrid Materials Based on Chitosan, Poly(Ethylene Glycol) and Laponite RD: Effect of Clay Concentration.

Polymers (Basel). 2023-2-8

[4]
Decontamination of Fuchsin dye by carboxymethyl cellulose-graft-poly(acrylic acid-co-itaconic acid)/carbon black nanocomposite hydrogel.

Int J Biol Macromol. 2022-12-1

[5]
Au nanoparticles decorated polypyrrole-carbon black/g-CN nanocomposite as ultrafast and efficient visible light photocatalyst.

Chemosphere. 2022-1

[6]
New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films.

Int J Biol Macromol. 2021-9-1

[7]
Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films.

Int J Biol Macromol. 2021-1-31

[8]
Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling.

Int J Biol Macromol. 2020-5-15

[9]
Adsorption of Azo Dye Methyl Orange from Aqueous Solutions Using Alkali-Activated Polypyrrole-Based Graphene Oxide.

Molecules. 2019-10-13

[10]
Slow-release lubrication effect of graphene oxide/poly(ethylene glycol) wrapped in chitosan/sodium glycerophosphate hydrogel applied on artificial joints.

Mater Sci Eng C Mater Biol Appl. 2018-12-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索