Zhao Yibo, Li Yudu, Jin Wen, Guo Rong, Ma Chao, Tang Weijun, Li Yao, El Fakhri Georges, Liang Zhi-Pei
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Nat Biomed Eng. 2025 Jun 20. doi: 10.1038/s41551-025-01418-4.
Magnetic resonance spectroscopic imaging has potential for non-invasive metabolic imaging of the human brain. Here we report a method that overcomes several long-standing technical barriers associated with clinical magnetic resonance spectroscopic imaging, including long data acquisition times, limited spatial coverage and poor spatial resolution. Our method achieves ultrafast data acquisition using an efficient approach to encode spatial, spectral and J-coupling information of multiple molecules. Physics-informed machine learning is synergistically integrated in data processing to enable reconstruction of high-quality molecular maps. We validated the proposed method through phantom experiments. We obtained high-resolution molecular maps from healthy participants, revealing metabolic heterogeneities in different brain regions. We also obtained high-resolution whole-brain molecular maps in regular clinical settings, revealing metabolic alterations in tumours and multiple sclerosis. This method has the potential to transform clinical metabolic imaging and provide a long-desired capability for non-invasive label-free metabolic imaging of brain function and diseases for both research and clinical applications.
磁共振波谱成像具有对人脑进行无创代谢成像的潜力。在此,我们报告了一种方法,该方法克服了与临床磁共振波谱成像相关的几个长期存在的技术障碍,包括数据采集时间长、空间覆盖范围有限和空间分辨率差。我们的方法采用一种有效的方法来编码多个分子的空间、光谱和 J 耦合信息,从而实现超快速数据采集。基于物理的机器学习被协同集成到数据处理中,以实现高质量分子图谱的重建。我们通过体模实验验证了所提出的方法。我们从健康参与者中获得了高分辨率分子图谱,揭示了不同脑区的代谢异质性。我们还在常规临床环境中获得了高分辨率全脑分子图谱,揭示了肿瘤和多发性硬化症中的代谢改变。这种方法有可能改变临床代谢成像,并为研究和临床应用提供长期以来所期望的对脑功能和疾病进行无创无标记代谢成像的能力。