Suppr超能文献

Vespa:用于 RF 脉冲设计、光谱模拟和 MRS 数据分析的集成应用程序。

Vespa: Integrated applications for RF pulse design, spectral simulation and MRS data analysis.

机构信息

Center for Advanced MR Development, Department of Radiology, Duke University Medical Center, Durham, NC, USA.

Center for Imaging of Neurodegenerative Disorders, University of California, San Francisco, CA, USA.

出版信息

Magn Reson Med. 2023 Sep;90(3):823-838. doi: 10.1002/mrm.29686. Epub 2023 May 15.

Abstract

PURPOSE

The Vespa package (Versatile Simulation, Pulses, and Analysis) is described and demonstrated. It provides workflows for developing and optimizing linear combination modeling (LCM) fitting for H MRS data using intuitive graphical user interface interfaces for RF pulse design, spectral simulation, and MRS data analysis. Command line interfaces for embedding workflows in MR manufacturer platforms and utilities for synthetic dataset creation are included. Complete provenance is maintained for all steps in workflows.

THEORY AND METHODS

Vespa is written in Python for compatibility across operating systems. It embeds the PyGAMMA spectral simulation library for spectral simulation. Multiprocessing methods accelerate processing and visualization. Applications use the Vespa database for results storage and cross-application access. Three projects demonstrate pulse, sequence, simulation, and data analysis workflows: (1) short TE semi-LASER single-voxel spectroscopy (SVS) LCM fitting, (2) optimizing MEGA-PRESS (MEscher-GArwood Point RESolved Spectroscopy) flip angle and LCM fitting, and (3) creating a synthetic short TE dataset.

RESULTS

The LCM workflows for in vivo basis set creation and spectral analysis showed reasonable results for both the short TE semi-LASER and MEGA-PRESS. Examples of pulses, simulations, and data fitting are shown in Vespa application interfaces for various steps to demonstrate the interactive workflow.

CONCLUSION

Vespa provides an efficient and extensible platform for characterizing RF pulses, pulse design, spectral simulation optimization, and automated LCM fitting via an interactive platform. Modular design and command line interface make it easy to embed in other platforms. As open source, it is free to the MRS community for use and extension. Vespa source code and documentation are available through GitHub.

摘要

目的

描述并演示了 Vespa 包(多功能仿真、脉冲和分析)。它为使用直观的图形用户界面(GUI)进行 RF 脉冲设计、光谱仿真和 MRS 数据分析,为 H MRS 数据开发和优化线性组合建模(LCM)拟合提供了工作流程。包括将工作流程嵌入 MR 制造商平台的命令行接口以及用于合成数据集创建的实用程序。所有工作流程步骤的完整来源都得到维护。

理论与方法

Vespa 是用 Python 编写的,以实现跨操作系统的兼容性。它嵌入了 PyGAMMA 光谱仿真库,用于光谱仿真。多进程方法加速了处理和可视化。应用程序使用 Vespa 数据库进行结果存储和跨应用程序访问。三个项目演示了脉冲、序列、仿真和数据分析工作流程:(1)短 TE 半 LASER 单体素光谱学(SVS)LCM 拟合,(2)优化 MEGA-PRESS(MEscher-GArwood Point RESolved Spectroscopy)翻转角和 LCM 拟合,以及(3)创建合成短 TE 数据集。

结果

体内基集创建和光谱分析的 LCM 工作流程对于短 TE 半 LASER 和 MEGA-PRESS 都显示出了合理的结果。在 Vespa 应用程序接口中展示了脉冲、仿真和数据拟合的示例,以演示交互工作流程的各个步骤。

结论

Vespa 通过交互式平台,为 RF 脉冲特性、脉冲设计、光谱仿真优化和自动化 LCM 拟合提供了一个高效、可扩展的平台。模块化设计和命令行接口使其易于嵌入其他平台。作为开源软件,它可供 MRS 社区免费使用和扩展。Vespa 的源代码和文档可通过 GitHub 获得。

相似文献

1
Vespa: Integrated applications for RF pulse design, spectral simulation and MRS data analysis.
Magn Reson Med. 2023 Sep;90(3):823-838. doi: 10.1002/mrm.29686. Epub 2023 May 15.
2
Advanced processing and simulation of MRS data using the FID appliance (FID-A)-An open source, MATLAB-based toolkit.
Magn Reson Med. 2017 Jan;77(1):23-33. doi: 10.1002/mrm.26091. Epub 2015 Dec 30.
3
FSL-MRS: An end-to-end spectroscopy analysis package.
Magn Reson Med. 2021 Jun;85(6):2950-2964. doi: 10.1002/mrm.28630. Epub 2020 Dec 6.
4
GAVA: spectral simulation for in vivo MRS applications.
J Magn Reson. 2007 Apr;185(2):291-9. doi: 10.1016/j.jmr.2007.01.005. Epub 2007 Jan 12.
6
Numerical simulations of localized high field 1H MR spectroscopy.
J Magn Reson. 2008 Nov;195(1):67-75. doi: 10.1016/j.jmr.2008.08.010. Epub 2008 Aug 28.
7
Multi-channel magnetic resonance spectroscopy graphical user interface (McMRSGUI).
PLoS One. 2024 Feb 28;19(2):e0299142. doi: 10.1371/journal.pone.0299142. eCollection 2024.
8
Impact of acquisition and modeling parameters on the test-retest reproducibility of edited GABA.
NMR Biomed. 2024 Apr;37(4):e5076. doi: 10.1002/nbm.5076. Epub 2023 Dec 13.
9
Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning.
J Magn Reson Imaging. 2024 Mar;59(3):964-975. doi: 10.1002/jmri.28868. Epub 2023 Jul 4.
10
Numerical simulation of PRESS localized MR spectroscopy.
J Magn Reson. 2005 Mar;173(1):54-63. doi: 10.1016/j.jmr.2004.11.018.

引用本文的文献

1
PulPy: A Python Toolkit for MRI RF and Gradient Pulse Design.
J Open Source Softw. 2024;9(103). doi: 10.21105/joss.06586. Epub 2024 Nov 1.
3
SMART MRS: A Simulated MEGA-PRESS ARTifacts toolbox for GABA-edited MRS.
Magn Reson Med. 2025 Nov;94(5):1826-1839. doi: 10.1002/mrm.30597. Epub 2025 Jun 8.
5
MRS-Sim: Open-Source Framework for Simulating In Vivo-like Magnetic Resonance Spectra.
bioRxiv. 2025 Apr 8:2024.12.20.629645. doi: 10.1101/2024.12.20.629645.
7
Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain.
Tomography. 2025 Jan 13;11(1):7. doi: 10.3390/tomography11010007.
10
PyAMARES, an Open-Source Python Library for Fitting Magnetic Resonance Spectroscopy Data.
Diagnostics (Basel). 2024 Nov 27;14(23):2668. doi: 10.3390/diagnostics14232668.

本文引用的文献

1
NIfTI-MRS: A standard data format for magnetic resonance spectroscopy.
Magn Reson Med. 2022 Dec;88(6):2358-2370. doi: 10.1002/mrm.29418. Epub 2022 Sep 11.
2
MRSCloud: A cloud-based MRS tool for basis set simulation.
Magn Reson Med. 2022 Nov;88(5):1994-2004. doi: 10.1002/mrm.29370. Epub 2022 Jul 1.
3
Influence of editing pulse flip angle on J-difference MR spectroscopy.
Magn Reson Med. 2022 Feb;87(2):589-596. doi: 10.1002/mrm.29008. Epub 2021 Sep 14.
4
ProFit-1D-A 1D fitting software and open-source validation data sets.
Magn Reson Med. 2021 Dec;86(6):2910-2929. doi: 10.1002/mrm.28941. Epub 2021 Aug 13.
6
FSL-MRS: An end-to-end spectroscopy analysis package.
Magn Reson Med. 2021 Jun;85(6):2950-2964. doi: 10.1002/mrm.28630. Epub 2020 Dec 6.
7
Adaptive baseline fitting for MR spectroscopy analysis.
Magn Reson Med. 2021 Jan;85(1):13-29. doi: 10.1002/mrm.28385. Epub 2020 Aug 14.
8
Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data.
J Neurosci Methods. 2020 Sep 1;343:108827. doi: 10.1016/j.jneumeth.2020.108827. Epub 2020 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验