Suppr超能文献

基于算法的肝脏肿瘤术中红外光谱诊断

Algorithm-based intraoperative diagnosis of liver tumors using infrared spectroscopy.

作者信息

Bandzeviciute Rimante, Preusse Grit, Brückmann Sascha, Hirle Alexander, Wedemann Anne, Baenke Franziska, Distler Marius, Riediger Carina, Weitz Jürgen, Sablinskas Valdas, Ceponkus Justinas, Steiner Gerald, Teske Christian

机构信息

Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania.

Department of Anesthesia and Intensive Care, Clinical Sensoring and Monitoring, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, Dresden, Germany.

出版信息

Sci Rep. 2025 Jun 20;15(1):20197. doi: 10.1038/s41598-025-06250-z.

Abstract

Liver cancer, including hepatocellular carcinoma (HCC), cholangiocellular carcinoma (CCC), and metastases, presents diagnostic challenges during surgery due to its infiltrative nature. Accurate intraoperative classification and margin assessment are crucial for improving outcomes. Current methods, like frozen section analysis, are time-consuming and subjective, necessitating rapid, objective alternatives. This study assessed fiber-based attenuated total reflection infrared (ATR IR) spectroscopy combined with supervised machine learning for intraoperative liver tumor classification based on a holistic biochemical signature approach. Fresh liver tissue from 69 surgical patients was analyzed using a probe consisting of Ge ATR crystal and silver halide fibers. Supervised algorithms reliably classified normal tissue and tumor subtypes (HCC, CCC, metastases) using cross-validation and independent test sets. Normal liver tissue was distinguished primarily by differences in glycogen content and structural compactness of tumor tissue. Normal and tumor tissues were differentiated with a sensitivity of 0.89 and a specificity of 0.92. The accuracy of spectroscopic classification is 0.90. The three-group classification of tumor subtypes also yielded an average accuracy of 0.90. HCC is characterized by a higher glycogen content compared to CCC and metastases and can be identified spectroscopically with high reliability. CCC showed distinct protein-associated spectral signatures, while metastases exhibited unique profiles reflecting their different origins. In a minority of cases, misclassifications occurred, indicating potential for further refinement. Fiber-based ATR IR spectroscopy in combination with machine learning provides a rapid, objective, and highly accurate intraoperative tool for liver tumor classification. This label-free biochemical approach may enhance surgical precision and reduce recurrence risks across the full range of solid tumor entities.

摘要

肝癌,包括肝细胞癌(HCC)、胆管细胞癌(CCC)和转移瘤,因其浸润性本质,在手术过程中带来了诊断挑战。准确的术中分类和切缘评估对于改善治疗结果至关重要。目前的方法,如冰冻切片分析,既耗时又主观,因此需要快速、客观的替代方法。本研究基于整体生化特征方法,评估了基于光纤的衰减全反射红外(ATR IR)光谱结合监督机器学习用于术中肝脏肿瘤分类。使用由锗ATR晶体和卤化银光纤组成的探头,对69例手术患者的新鲜肝脏组织进行了分析。监督算法使用交叉验证和独立测试集,可靠地对正常组织和肿瘤亚型(HCC、CCC、转移瘤)进行了分类。正常肝脏组织主要通过糖原含量和肿瘤组织结构紧密程度的差异来区分。正常组织和肿瘤组织的区分灵敏度为0.89,特异性为0.92。光谱分类的准确率为0.90。肿瘤亚型的三组分类平均准确率也为0.90。与CCC和转移瘤相比,HCC的糖原含量更高,并且可以通过光谱法高度可靠地识别。CCC显示出与蛋白质相关的独特光谱特征,而转移瘤则表现出反映其不同起源的独特谱型。在少数情况下会出现错误分类,这表明有进一步改进的潜力。基于光纤的ATR IR光谱结合机器学习为肝脏肿瘤分类提供了一种快速、客观且高度准确的术中工具。这种无标记的生化方法可能会提高手术精度,并降低所有实体肿瘤的复发风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c737/12181317/7950d4e6242b/41598_2025_6250_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验