Lee Daeyeol, Jin Hyunbin, Kim Sojeong, Kim Sunwoo, Park Eunyoung, Yoo Dongwon, Hahn Ji-Sook
Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
J Agric Food Chem. 2025 Jul 2;73(26):16479-16489. doi: 10.1021/acs.jafc.5c03130. Epub 2025 Jun 21.
Mycosporine-like amino acids (MAAs) are ultraviolet-absorbing metabolites with recognized photoprotective and pharmacological benefits, predominantly found in marine organisms. Due to the inefficiency of extraction from natural sources, microbial biosynthesis using heterologous hosts is an attractive alternative. Disubstituted MAAs, such as shinorine, porphyra-334, and mycosporine-2-glycine, are synthesized by conjugating serine, threonine, or glycine to mycosporine-glycine (MG), a reaction catalyzed by either a d-Ala-d-Ala ligase homolog (MysD) or a nonribosomal peptide synthetase (MysE). While MysD enzymes often yield diverse byproducts due to substrate promiscuity, MysE demonstrates higher substrate specificity; however, only a serine-specific MysE has been biochemically characterized. In this study, we enhanced shinorine production in by expressing (). Functional expression required coexpression of a phosphopantetheinyl transferase (PPTase), which was absent in but native to . The PPTase supported the MysE activity in both hosts. Furthermore, we engineered the MysE adenylation domain to alter specificity from serine to alanine, enabling biosynthesis of MG-alanine, a rare MAA previously detected only as a minor MysD byproduct. These findings demonstrate the utility of MysE engineering for expanding MAA diversity and advancing the sustainable microbial production of novel sunscreen compounds.
类菌孢素氨基酸(MAAs)是一类具有公认的光保护和药理益处的紫外线吸收代谢产物,主要存在于海洋生物中。由于从天然来源提取效率低下,利用异源宿主进行微生物生物合成是一种有吸引力的替代方法。二取代的MAAs,如紫菜碱、紫菜-334和菌孢素-2-甘氨酸,是通过将丝氨酸、苏氨酸或甘氨酸与菌孢素-甘氨酸(MG)共轭合成的,该反应由d-Ala-d-Ala连接酶同源物(MysD)或非核糖体肽合成酶(MysE)催化。虽然MysD酶由于底物混杂性常常产生多种副产物,但MysE表现出更高的底物特异性;然而,只有丝氨酸特异性的MysE已得到生化表征。在本研究中,我们通过表达()提高了紫菜碱在中的产量。功能性表达需要共表达磷酸泛酰巯基乙胺基转移酶(PPTase),该酶在中不存在,但在中是天然存在的。的PPTase在两种宿主中均支持MysE活性。此外,我们对MysE腺苷化结构域进行工程改造,将特异性从丝氨酸改变为丙氨酸,从而使能够生物合成MG-丙氨酸,这是一种罕见的MAAs,以前仅作为次要的MysD副产物被检测到。这些发现证明了MysE工程在扩大MAAs多样性和推进新型防晒化合物的可持续微生物生产方面的实用性。