Suppr超能文献

基于深度学习的细菌单颗粒质谱分析与识别

Deep learning-based analysis and identification of single-particle mass spectra of bacteria.

作者信息

Chen Hong, Zhang Ning, Du Yao-Hua, Zhan Xiao-Bo, Li Lei, Cheng Zhi

机构信息

Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, China.

Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.

出版信息

Anal Bioanal Chem. 2025 Jun 21. doi: 10.1007/s00216-025-05942-9.

Abstract

Single-particle mass spectrometry (SPMS) has the potential to identify bacterial species. However, this crucial topic has received limited attention in research. This investigation aims to fill this gap by combining SPMS with supervised learning algorithms to distinguish six bacterial species. The study begins by collecting particle size and mass spectra data for six bacteria and four biomass combustion products (BCPs) using SPMS. These data are used to compare particle sizes and create a comprehensive dataset containing mass spectra for all ten subjects. The mass spectra peak ratio method is then employed to differentiate between bacteria and BCPs, highlighting their distinct distributions of PO₃/PO₂ and CNO/CN in scatter plots. In addition to this, the study compares the mass spectrometry ion features of bacteria and BCPs and evaluates the classification performance of support vector machines (SVM), multi-layer perceptrons (MLP), and convolutional neural networks (CNN) using five criteria. The Score-Weighted Class Activation Mapping (Score-CAM) method is used to visualize and analyze the CNN models, extracting and analyzing the key ionic features that the CNN models relied on for classification. The results demonstrate that the mass spectra peak ratio method effectively distinguishes bacteria from BCPs. The CNN and MLP algorithms can not only accurately distinguish between bacteria and BCPs but also precisely identify different types of bacteria. The overall classification accuracy of the CNN and MLP models exceeds 96%. The key ions obtained using the Score-CAM method exhibit varying degrees of signal intensity differences among different bacteria, which helps to understand the compositional differences between various bacterial species. This study provides an effective methodology for the in-depth analysis of SPMS data.

摘要

单颗粒质谱分析(SPMS)有识别细菌种类的潜力。然而,这一关键课题在研究中受到的关注有限。本研究旨在通过将SPMS与监督学习算法相结合来区分六种细菌种类,以填补这一空白。该研究首先使用SPMS收集六种细菌和四种生物质燃烧产物(BCP)的粒径和质谱数据。这些数据用于比较粒径,并创建一个包含所有十个样本质谱的综合数据集。然后采用质谱峰比法区分细菌和BCP,在散点图中突出显示它们在PO₃/PO₂和CNO/CN方面的不同分布。除此之外,该研究比较了细菌和BCP的质谱离子特征,并使用五个标准评估支持向量机(SVM)、多层感知器(MLP)和卷积神经网络(CNN)的分类性能。使用分数加权类激活映射(Score-CAM)方法对CNN模型进行可视化和分析,提取并分析CNN模型用于分类所依赖的关键离子特征。结果表明,质谱峰比法能有效区分细菌和BCP。CNN和MLP算法不仅能准确区分细菌和BCP,还能精确识别不同类型的细菌。CNN和MLP模型的总体分类准确率超过96%。使用Score-CAM方法获得的关键离子在不同细菌之间表现出不同程度的信号强度差异,这有助于了解不同细菌种类之间的成分差异。本研究为深入分析SPMS数据提供了一种有效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验