Suppr超能文献

使用Hologic Genius数字诊断系统评估宫颈细胞学筛查的有效性和准确性。

Assessment of the efficacy and accuracy of cervical cytology screening with the Hologic Genius Digital Diagnostics System.

作者信息

Elishaev Esther, Harinath Lakshmi, Ye Yuhong, Matsko Jonee, Colaizzi Amy, Wharton Stephanie, Bhargava Rohit, Pantanowitz Liron, Hanna Matthew G, Harrington Sarah, Zhao Chengquan

机构信息

Department of Pathology, UPMC Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.

出版信息

Cancer Cytopathol. 2025 Jul;133(7):e70022. doi: 10.1002/cncy.70022.

Abstract

BACKGROUND

Medical technologies powered by artificial intelligence are quickly transforming into practical solutions by rapidly leveraging massive amounts of data processed via deep learning algorithms. There is a necessity to validate these innovative tools when integrated into clinical practice.

METHODS

This study evaluated the performance of the Hologic Genius Digital Diagnostics System (HGDDS) with a cohort of 890 previously reviewed and diagnosed ThinPrep Papanicolaou (Pap) tests with the intent to deploy this system for routine clinical use. The study included all diagnostic categories of The Bethesda System, with follow-up tissue sampling performed within 6 months of abnormal Pap test results to serve as the ground truth.

RESULTS

The HGDDS demonstrated excellent performance in detecting significant Pap test findings, with close to 100% sensitivity (98.2%-100%) for cases classified as atypical squamous cells of undetermined significance and above within a 95% confidence interval and a high negative predictive value (92.4%-100%).

CONCLUSIONS

The HGDDS streamlined workflow, reduced manual workload, and functioned as a stand-alone system.

摘要

背景

由人工智能驱动的医疗技术正通过快速利用深度学习算法处理的大量数据,迅速转化为实际解决方案。当这些创新工具集成到临床实践中时,有必要对其进行验证。

方法

本研究评估了Hologic Genius数字诊断系统(HGDDS)的性能,该研究队列包括890例先前经过审查和诊断的薄层液基细胞学检测(ThinPrep Pap)样本,旨在将该系统用于常规临床应用。该研究涵盖了贝塞斯达系统的所有诊断类别,并在巴氏试验结果异常后的6个月内进行了后续组织采样,以作为金标准。

结果

HGDDS在检测重要的巴氏试验结果方面表现出色,对于分类为意义不明确的非典型鳞状细胞及以上的病例,在95%置信区间内灵敏度接近100%(98.2%-100%),且具有较高的阴性预测值(92.4%-100%)。

结论

HGDDS简化了工作流程,减少了人工工作量,并作为一个独立系统发挥作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6115/12182264/34169dd7a308/CNCY-133-0-g001.jpg

相似文献

2
Cytology versus HPV testing for cervical cancer screening in the general population.
Cochrane Database Syst Rev. 2017 Aug 10;8(8):CD008587. doi: 10.1002/14651858.CD008587.pub2.
4
5
Accuracy of the Papanicolaou test in screening for and follow-up of cervical cytologic abnormalities: a systematic review.
Ann Intern Med. 2000 May 16;132(10):810-9. doi: 10.7326/0003-4819-132-10-200005160-00009.
9
Is age a determinant in cervical cancer screening in women aged 18 to 29?: An observational study.
Medicine (Baltimore). 2025 Jun 13;104(24):e42765. doi: 10.1097/MD.0000000000042765.
10
Liquid compared with conventional cervical cytology: a systematic review and meta-analysis.
Obstet Gynecol. 2008 Jan;111(1):167-77. doi: 10.1097/01.AOG.0000296488.85807.b3.

本文引用的文献

2
Validation of AI-assisted ThinPrep® Pap test screening using the Genius Digital Diagnostics System.
J Pathol Inform. 2024 Jul 2;15:100391. doi: 10.1016/j.jpi.2024.100391. eCollection 2024 Dec.
3
Implementation of Digital Pathology and Artificial Intelligence in Routine Pathology Practice.
Lab Invest. 2024 Sep;104(9):102111. doi: 10.1016/j.labinv.2024.102111. Epub 2024 Jul 23.
4
Artificial intelligence enables precision diagnosis of cervical cytology grades and cervical cancer.
Nat Commun. 2024 May 22;15(1):4369. doi: 10.1038/s41467-024-48705-3.
5
Assessment of Efficacy and Accuracy of Cervical Cytology Screening With Artificial Intelligence Assistive System.
Mod Pathol. 2024 Jun;37(6):100486. doi: 10.1016/j.modpat.2024.100486. Epub 2024 Apr 6.
8
Comparison of the Hologic Genius Digital Diagnostics System with the ThinPrep Imaging System-A retrospective assessment.
Cancer Cytopathol. 2023 Jul;131(7):424-432. doi: 10.1002/cncy.22695. Epub 2023 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验