Suppr超能文献

使用Genius数字诊断系统对人工智能辅助的ThinPrep®巴氏试验筛查进行验证。

Validation of AI-assisted ThinPrep® Pap test screening using the Genius Digital Diagnostics System.

作者信息

Cantley Richard L, Jing Xin, Smola Brian, Hao Wei, Harrington Sarah, Pantanowitz Liron

机构信息

Department of Pathology, University of Michigan-Michigan Medicine, 2800 Plymouth Rd, Building 35, Ann Arbor, MI 48109, USA.

Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.

出版信息

J Pathol Inform. 2024 Jul 2;15:100391. doi: 10.1016/j.jpi.2024.100391. eCollection 2024 Dec.

Abstract

Advances in whole-slide imaging and artificial intelligence present opportunities for improvement in Pap test screening. To date, there have been limited studies published regarding how best to validate newer AI-based digital systems for screening Pap tests in clinical practice. In this study, we validated the Genius™ Digital Diagnostics System (Hologic) by comparing the performance to traditional manual light microscopic diagnosis of ThinPrep Pap test slides. A total of 319 ThinPrep Pap test cases were prospectively assessed by six cytologists and three cytopathologists by light microscopy and digital evaluation and the results compared to the original ground truth Pap test diagnosis. Concordance with the original diagnosis was significantly different by digital and manual light microscopy review when comparing across: (i) exact Bethesda System diagnostic categories (62.1% vs 55.8%, respectively,  = 0.014), (ii) condensed diagnostic categories (76.8% vs 71.5%, respectively,  = 0.027), and (iii) condensed diagnoses based on clinical management (71.5% vs 65.2%, respectively,  = 0.017). Time to evaluate cases was shorter for digital (M = 3.2 min, SD = 2.2) compared to manual (M = 5.9 min, SD = 3.1) review (t(352) = 19.44,  < 0.001, Cohen's d = 1.035, 95% CI [0.905, 1.164]). Not only did our validation study demonstrate that AI-based digital Pap test evaluation had improved diagnostic accuracy and reduced screening time compared to light microscopy, but that participants reported a positive experience using this system.

摘要

全玻片成像和人工智能的进展为改进巴氏试验筛查提供了机会。迄今为止,关于如何在临床实践中最好地验证基于人工智能的新型数字系统用于巴氏试验筛查的研究发表较少。在本研究中,我们通过将Genius™数字诊断系统(Hologic)与传统的手工光学显微镜诊断ThinPrep巴氏试验玻片的性能进行比较,对其进行了验证。共有319例ThinPrep巴氏试验病例由6名细胞学家和3名细胞病理学家通过光学显微镜和数字评估进行前瞻性评估,并将结果与原始的真实巴氏试验诊断进行比较。当进行如下比较时,数字和手工光学显微镜检查与原始诊断的一致性存在显著差异:(i)精确的贝塞斯达系统诊断类别(分别为62.1%和55.8%,P = 0.014),(ii)简化诊断类别(分别为76.8%和71.5%,P = 0.027),以及(iii)基于临床管理的简化诊断(分别为71.5%和65.2%,P = 0.017)。与手工检查(M = 5.9分钟,SD = 3.1)相比,数字检查(M = 3.2分钟,SD = 2.2)评估病例的时间更短(t(352) = 19.44,P < 0.001,Cohen's d = 1.035,95% CI [0.905, 1.164])。我们的验证研究不仅表明,与光学显微镜相比,基于人工智能的数字巴氏试验评估提高了诊断准确性并缩短了筛查时间,而且参与者报告使用该系统的体验良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验