Suppr超能文献

使用亲水性组织透明化、光片显微镜和基于深度学习的图像处理进行全脂肪细胞分析。

In Toto Adipocytes Analysis Using Hydrophilic Tissue Clearing, Light Sheet Microscopy, and Deep Learning-Based Image Processing.

作者信息

Le Jan Dylan, Harb Manar, Siliman Misha Mohamed, Desfontis Jean-Claude, Mallem Yassine, Dubreil Laurence

机构信息

Oniris, NP3 (Nutrition, PathoPhysiology & Pharmacology), Nantes, France.

Oniris, INRAE, APEX PAnTher, Nantes, France.

出版信息

Biol Cell. 2025 Jun;117(6):e70013. doi: 10.1111/boc.70013.

Abstract

BACKGROUND INFORMATION

Obesity is a multifactorial metabolic disease characterized by excessive fat storage in adipocytes, particularly in visceral adipose tissue (VAT) like mesenteric adipocytes. Metabolic dysfunctions due to obesity are often associated with modification of adipocyte volume. Various techniques for measuring adipocyte size are described in the literature, including classical histological methods on paraffin-embedded tissue sections or dissociation of adipose tissue (AT) using collagenase with artifacts due to AT post treatment.

RESULTS

This study aims to develop and implement an innovative method for 3D investigation of AT to assess adipocyte volume, overcoming the limitations and biases inherent in traditional techniques. The principle of the method relies on fluorescent labeling of lipids and extracellular matrix (ECM) in toto within AT, followed by a tissue clearing step without delipidation and imaging using 3D light sheet microscopy coupled with automated analysis of adipocyte size through a deep learning approach. By this work we showed that the volume of adipocytes increased in mesenteric AT from obese rats with an increase in the distance between adipocytes.

CONCLUSION AND SIGNIFICANCE

The current work highlights the interest in combining AT clearing without a delipidation step and light sheet microscopy for in toto 3D adipocyte characterization in obese versus healthy rats. While this method is particularly valuable for understanding adipocyte hypertrophy in the context of obesity, its applicability extends beyond this area. This innovative approach offers valuable opportunities for investigating adipocyte dynamics in various pathological conditions, evaluating the impact of nutritional interventions, and assessing the effectiveness of pharmacological treatments.

摘要

背景信息

肥胖是一种多因素代谢疾病,其特征是脂肪细胞中过度储存脂肪,特别是在肠系膜脂肪细胞等内脏脂肪组织(VAT)中。肥胖引起的代谢功能障碍通常与脂肪细胞体积的改变有关。文献中描述了各种测量脂肪细胞大小的技术,包括对石蜡包埋组织切片的经典组织学方法,或使用胶原酶解离脂肪组织(AT),但由于AT后处理会产生假象。

结果

本研究旨在开发并实施一种用于AT三维研究以评估脂肪细胞体积的创新方法,克服传统技术固有的局限性和偏差。该方法的原理依赖于对AT内脂质和细胞外基质(ECM)进行整体荧光标记,随后进行无需脱脂的组织透明化步骤,并使用三维光片显微镜成像,同时通过深度学习方法对脂肪细胞大小进行自动分析。通过这项工作,我们表明肥胖大鼠肠系膜AT中脂肪细胞的体积增加,脂肪细胞之间的距离也增加。

结论与意义

当前工作突出了在不进行脱脂步骤的情况下结合AT透明化和光片显微镜对肥胖与健康大鼠的脂肪细胞进行整体三维表征的意义。虽然这种方法对于理解肥胖背景下的脂肪细胞肥大特别有价值,但其适用性超出了这一领域。这种创新方法为研究各种病理条件下的脂肪细胞动态、评估营养干预的影响以及评估药物治疗的有效性提供了宝贵机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e83/12182890/d2b3c06bed9f/BOC-117-e70013-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验