Karagach Shiri, Smollich Joachim, Atrakchi Ofir, Mohan Vishnu, Geiger Tamar
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
Mol Cell Proteomics. 2025 Jun 20;24(7):101018. doi: 10.1016/j.mcpro.2025.101018.
Single-cell mass spectrometry-based proteomics (SCP) can resolve cellular heterogeneity in complex biological systems and provide a system-level view of the proteome of each cell. Major advancements in SCP methodologies have been introduced in recent years, providing highly sensitive sample preparation methods and mass spectrometric technologies. However, most studies present limited throughput and mainly focus on the analysis of cultured cells. To enhance the depth, accuracy, and throughput of SCP for tumor analysis, we developed an automated, high-throughput pipeline that enables the analysis of 1536 single cells in a single experiment. This approach integrates low-volume sample preparation, automated sample purification, and LC-MS analysis with the Slice-PASEF method. Integration of these methodologies into a streamlined pipeline led to a robust and reproducible identification of more than 3000 proteins per cell. We applied this pipeline to analyze tumor macrophages in a murine lung metastasis model. We identified over 1700 proteins per cell, including key macrophage markers and more than 500 differentially expressed proteins between tumor and control macrophages. PCA analysis successfully separated these populations, revealing the utility of SCP in capturing biologically relevant signals in the tumor microenvironment. Our results demonstrate a robust and scalable pipeline poised to advance single-cell proteomics in cancer research.
基于单细胞质谱的蛋白质组学(SCP)能够解析复杂生物系统中的细胞异质性,并提供每个细胞蛋白质组的系统层面视图。近年来,SCP方法取得了重大进展,提供了高灵敏度的样品制备方法和质谱技术。然而,大多数研究的通量有限,且主要集中于对培养细胞的分析。为提高SCP用于肿瘤分析的深度、准确性和通量,我们开发了一种自动化的高通量流程,可在单个实验中对1536个单细胞进行分析。该方法将低体积样品制备、自动样品纯化以及液相色谱-质谱联用分析与Slice-PASEF方法相结合。将这些方法整合到一个简化的流程中,实现了每个细胞可稳健且可重复地鉴定出3000多种蛋白质。我们应用此流程分析了小鼠肺转移模型中的肿瘤巨噬细胞。我们鉴定出每个细胞中有超过1700种蛋白质,包括关键的巨噬细胞标志物以及肿瘤巨噬细胞与对照巨噬细胞之间500多种差异表达的蛋白质。主成分分析成功分离了这些群体,揭示了SCP在捕获肿瘤微环境中生物学相关信号方面的效用。我们的结果证明了一种稳健且可扩展的流程,有望推动癌症研究中的单细胞蛋白质组学发展。