Suppr超能文献

人工智能与罕见遗传性肾脏疾病的前景

Artificial intelligence and perspective for rare genetic kidney diseases.

作者信息

Chen Xiaoyi, Burgun Anita, Boyer Olivia, Knebelmann Bertrand, Garcelon Nicolas

机构信息

Université Paris Cité, Imagine Institute, Data Science Platform, INSERM UMR 1163, Paris, France.

Université Paris Cité, Imagine Institute, Data Science Platform, INSERM UMR 1163, Paris, France; Département d'Informatique Médicale, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.

出版信息

Kidney Int. 2025 Jun 20. doi: 10.1016/j.kint.2025.03.033.

Abstract

The integration of big data and artificial intelligence (AI) has revolutionized biomedicine, enhancing our understanding of diseases and health care practices. Although AI has shown remarkable success in some medical fields, its application in nephrology faces challenges because of the complex disease mechanisms and intricate physiology. These obstacles are further compounded in rare diseases, affecting <1 in 2000 people, where data scarcity and clinical complexities create additional challenges for AI in accurate disease characterization and prediction. Rare kidney diseases encompass >150 different conditions, with significant clinical and genetic heterogeneity, posing unique challenges for AI applications. Embracing AI for rare kidney diseases is essential, not only for driving the discovery of novel genes, pathways, and mechanisms relevant to both rare and common diseases, but also for shortening the diagnostic odyssey faced by patients with rare conditions, a goal regarded as the most urgent and transformative need in rare disease care. Recent reviews highlight AI applications in nephrology, focusing on big data sources, decision support systems, imaging data, multi-omics integration, and genotype-phenotype analysis. This review explores the current landscape of AI in rare genetic kidney diseases, examining key challenges and advancements in disease characterization and clinical decision support, with an emphasis on hypothesis generation using unsupervised methods and generative AI. It shows how AI can empower physicians to interpret complex data sets, identify patterns, and generate insights that can lead to improved patient outcomes and innovative medical research for rare genetic kidney conditions.

摘要

大数据与人工智能(AI)的整合彻底改变了生物医学,加深了我们对疾病和医疗保健实践的理解。尽管人工智能在一些医学领域已取得显著成功,但其在肾脏病学中的应用仍面临挑战,因为疾病机制复杂且生理过程错综复杂。在罕见病(患病人数不到两千分之一)中,这些障碍更加复杂,数据稀缺和临床复杂性给人工智能在准确疾病特征描述和预测方面带来了额外挑战。罕见肾病涵盖150多种不同病症,具有显著的临床和遗传异质性,给人工智能应用带来了独特挑战。将人工智能应用于罕见肾病至关重要,这不仅有助于发现与罕见病和常见疾病相关的新基因、途径和机制,还能缩短罕见病患者面临的诊断历程,这一目标被视为罕见病护理中最紧迫且具有变革性的需求。近期综述强调了人工智能在肾脏病学中的应用,重点关注大数据来源、决策支持系统、影像数据、多组学整合以及基因型 - 表型分析。本综述探讨了人工智能在罕见遗传性肾病中的现状,研究疾病特征描述和临床决策支持方面的关键挑战与进展,重点是使用无监督方法和生成式人工智能进行假设生成。它展示了人工智能如何赋能医生解读复杂数据集、识别模式并产生见解,从而改善患者预后,并为罕见遗传性肾病状况开展创新性医学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验