Suppr超能文献

MSLI-Net:基于多段定位和多尺度交互的视网膜疾病检测网络。

MSLI-Net: retinal disease detection network based on multi-segment localization and multi-scale interaction.

作者信息

Qi Zhenjia, Hong Jin, Cheng Jilan, Long Guoli, Wang Hanyu, Li Siyue, Cao Shuangliang

机构信息

School of Information Engineering, Nanchang University, Nanchang, China.

School of Advanced Energy, Sun Yat-sen University, Shenzhen, China.

出版信息

Front Cell Dev Biol. 2025 Jun 6;13:1608325. doi: 10.3389/fcell.2025.1608325. eCollection 2025.

Abstract

BACKGROUND

The retina plays a critical role in visual perception, yet lesions affecting it can lead to severe and irreversible visual impairment. Consequently, early diagnosis and precise identification of these retinal lesions are essential for slowing disease progression. Optical coherence tomography (OCT) stands out as a pivotal imaging modality in ophthalmology due to its exceptional performance, while the inherent complexity of retinal structures and significant noise interference present substantial challenges for both manual interpretation and AI-assisted diagnosis.

METHODS

We propose MSLI-Net, a novel framework built upon the ResNet50 backbone, which enhances the global receptive field via a multi-scale dilation fusion module (MDF) to better capture long-range dependencies. Additionally, a multi-segmented lesion localization module (LLM) is integrated within each branch of a modified feature pyramid network (FPN) to effectively extract critical features while suppressing background noise through parallel branch refinement, and a wavelet subband spatial attention module (WSSA) is designed to significantly improve the model's overall performance in noise suppression by collaboratively processing and exchanging information between the low- and high-frequency subbands extracted through wavelet decomposition.

RESULTS

Experimental evaluation on the OCT-C8 dataset demonstrates that MSLI-Net achieves 96.72% accuracy in retinopathy classification, underscoring its strong discriminative performance and promising potential for clinical application.

CONCLUSION

This model provides new research ideas for the early diagnosis of retinal diseases and helps drive the development of future high-precision medical imaging-assisted diagnostic systems.

摘要

背景

视网膜在视觉感知中起着关键作用,但影响它的病变可导致严重且不可逆的视力损害。因此,早期诊断和精确识别这些视网膜病变对于减缓疾病进展至关重要。光学相干断层扫描(OCT)因其卓越的性能在眼科领域成为一种关键的成像方式,然而视网膜结构的固有复杂性和显著的噪声干扰对人工解读和人工智能辅助诊断都构成了重大挑战。

方法

我们提出了MSLI-Net,这是一个基于ResNet50骨干构建的新型框架,它通过多尺度扩张融合模块(MDF)增强全局感受野,以更好地捕捉长程依赖关系。此外,在改进的特征金字塔网络(FPN)的每个分支内集成了一个多分段病变定位模块(LLM),以有效提取关键特征,同时通过并行分支细化抑制背景噪声,并且设计了一个小波子带空间注意力模块(WSSA),通过协同处理和交换通过小波分解提取的低频和高频子带之间的信息,显著提高模型在噪声抑制方面的整体性能。

结果

在OCT-C8数据集上的实验评估表明,MSLI-Net在视网膜病变分类中达到了96.72%的准确率,突出了其强大的判别性能和有前景的临床应用潜力。

结论

该模型为视网膜疾病的早期诊断提供了新的研究思路,并有助于推动未来高精度医学成像辅助诊断系统的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5013/12179138/4d575aea5bc1/fcell-13-1608325-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验