Suppr超能文献

膳食摄入数据再利用质量评估框架的开发与评估:一项FNS-Cloud研究

The development and evaluation of a quality assessment framework for reuse of dietary intake data: an FNS-Cloud study.

作者信息

Bardon Laura A, Bennett Grace, Weech Michelle, Hwang Faustina, Kelly Eve F A, Lovegrove Julie A, Panov Panče, Astley Siân, Finglas Paul, Gibney Eileen R

机构信息

Food and Nutrition National Bioscience Research Infrastructure, Quadram Institute Bioscience, Norwich, United Kingdom.

Institute of Food and Health, University College Dublin (UCD), Dublin, Ireland.

出版信息

Front Nutr. 2025 Jun 6;12:1519401. doi: 10.3389/fnut.2025.1519401. eCollection 2025.

Abstract

A key aim of the FNS-Cloud project (grant agreement no. 863059) was to overcome fragmentation within food, nutrition and health data through development of tools and services facilitating matching and merging of data to promote increased reuse. However, in an era of increasing data reuse, it is imperative that the scientific quality of data analysis is maintained. Whilst it is true that many datasets be reused, questions remain regarding whether they be, thus, there is a need to support researchers making such a decision. This paper describes the development and evaluation of the FNS-Cloud data quality assessment tool for dietary intake datasets. Markers of quality were identified from the literature for dietary intake, lifestyle, demographic, anthropometric, and consumer behavior data at all levels of data generation (data collection, underlying data sources used, dataset management and data analysis). These markers informed the development of a quality assessment framework, which comprised of decision trees and feedback messages relating to each quality parameter. These fed into a report provided to the researcher on completion of the assessment, with considerations to support them in deciding whether the dataset is appropriate for reuse. This quality assessment framework was transformed into an online tool and a user evaluation study undertaken. Participants recruited from three centres ( = 13) were observed and interviewed while using the tool to assess the quality of a dataset they were familiar with. Participants positively rated the assessment format and feedback messages in helping them assess the quality of a dataset. Several participants quoted the tool as being potentially useful in training students and inexperienced researchers in the use of secondary datasets. This quality assessment tool, deployed within FNS-Cloud, is openly accessible to users as one of the first steps in identifying datasets suitable for use in their specific analyses. It is intended to support researchers in their decision-making process of whether previously collected datasets under consideration for reuse are fit their new intended research purposes. While it has been developed and evaluated, further testing and refinement of this resource would improve its applicability to a broader range of users.

摘要

FNS-Cloud项目(资助协议编号:863059)的一个关键目标是,通过开发有助于数据匹配与合并以促进更多重用的工具和服务,克服食品、营养和健康数据的碎片化问题。然而,在数据重用日益增加的时代,保持数据分析的科学质量至关重要。虽然确实有许多数据集可以重用,但对于它们是否应该被重用仍存在疑问,因此,需要支持研究人员做出这样的决定。本文描述了用于膳食摄入数据集的FNS-Cloud数据质量评估工具的开发与评估。从文献中确定了数据生成各个层面(数据收集、所使用的基础数据源、数据集管理和数据分析)膳食摄入、生活方式、人口统计学、人体测量学和消费者行为数据的质量指标。这些指标为质量评估框架的开发提供了依据,该框架由决策树和与每个质量参数相关的反馈信息组成。这些内容形成了一份在评估完成后提供给研究人员的报告,其中包含一些考量因素,以支持他们决定该数据集是否适合重用。这个质量评估框架被转化为一个在线工具,并开展了一项用户评估研究。从三个中心招募的13名参与者在使用该工具评估他们熟悉的一个数据集的质量时,接受了观察和访谈。参与者对评估形式和反馈信息给予了积极评价,认为它们有助于评估数据集的质量。几位参与者称该工具在培训学生和缺乏经验的研究人员使用二手数据集方面可能会很有用。这个部署在FNS-Cloud中的质量评估工具,作为识别适合其特定分析使用的数据集的第一步,对用户开放访问。它旨在支持研究人员在决策过程中判断正在考虑重用的先前收集的数据集是否适合其新的预期研究目的。虽然它已经开发并经过评估,但对该资源进行进一步测试和完善将提高其对更广泛用户的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74c6/12178894/1b7cd90a8682/fnut-12-1519401-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验