Lu Yanhui, Song Jia, Lv Yongle, Heng Boon Chin, Xu Mingming, He Ying, Liang Youde, Wang Lu-Ning, Wu Tingting, Song Ting, Li Tingjun, Ren Qiaomei, Wang Lei, Deng Xuliang, Zhang Xuehui
Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.
Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.
Adv Sci (Weinh). 2025 Sep;12(34):e06736. doi: 10.1002/advs.202506736. Epub 2025 Jun 23.
Implant materials for bone regeneration necessitate a barrier function to block bacterial adhesion and fibroblast infiltration, while maintaining a delicate equilibrium between material degradation and osteogenesis. Here, a spatiotemporally and hierarchically-guided bone regeneration hydrogel with a Janus structure is engineered through a sequential photocuring protocol, which features full barrier protection by the outer dense phase and superior osteoconductivity within the inner loose phase. The Janus hydrogel exhibits stable spatiotemporal layering, adaptable degradation, asymmetrical combination of network structures, and mechanical strength. The dense phase, with space maintenance capacity, completely covers the defective area, continuously blocking fibroblast infiltration, and preventing bacterial adhesion. In addition, the loose phase is shape-adapted to the defective cavity, allowing osteoblast-associated cells to migrate and create a favorable osteogenic microenvironment. In situ implantation of this Janus hydrogel effectively promoted osteogenesis, angiogenesis, and neurogenesis in both mouse calvarial and rat periodontal bone defect models. Furthermore, the osteogenic efficiency achieved by the Janus hydrogel implanted in mouse calvarial defects and rat periodontal defects is increased by 42% and 13.7%, respectively, as compared with previous studies. These findings thus demonstrated the synergy of protective barrier function, osteoconductive properties, and adaptive degradation within a single scaffold, which is conducive to bone regeneration.
用于骨再生的植入材料需要具备屏障功能,以阻止细菌黏附和成纤维细胞浸润,同时在材料降解和成骨作用之间保持微妙的平衡。在此,通过顺序光固化方案设计了一种具有Janus结构的时空和层次引导的骨再生水凝胶,其特点是外部致密相提供全面的屏障保护,内部疏松相具有优异的骨传导性。Janus水凝胶表现出稳定的时空分层、适应性降解、网络结构的不对称组合以及机械强度。具有空间维持能力的致密相完全覆盖缺损区域,持续阻止成纤维细胞浸润并防止细菌黏附。此外,疏松相能适应缺损腔的形状,允许成骨相关细胞迁移并创造有利的成骨微环境。在小鼠颅骨和大鼠牙周骨缺损模型中,原位植入这种Janus水凝胶有效地促进了成骨、血管生成和神经生成。此外,与先前的研究相比,植入小鼠颅骨缺损和大鼠牙周缺损的Janus水凝胶实现的成骨效率分别提高了42%和13.7%。因此,这些发现证明了在单个支架内保护屏障功能、骨传导特性和适应性降解的协同作用,这有利于骨再生。