文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于加速血管化骨再生的仿细胞外基质复合水凝胶

ECM-mimicking composite hydrogel for accelerated vascularized bone regeneration.

作者信息

Li Guanglong, Gao Fei, Yang Donglei, Lin Lu, Yu Weijun, Tang Jiaqi, Yang Ruhan, Jin Min, Gu Yuting, Wang Pengfei, Lu Eryi

机构信息

Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.

Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.

出版信息

Bioact Mater. 2024 Sep 4;42:241-256. doi: 10.1016/j.bioactmat.2024.08.035. eCollection 2024 Dec.


DOI:10.1016/j.bioactmat.2024.08.035
PMID:39285909
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11404060/
Abstract

Bioactive hydrogel materials have great potential for applications in bone tissue engineering. However, fabrication of functional hydrogels that mimic the natural bone extracellular matrix (ECM) remains a challenge, because they need to provide mechanical support and embody physiological cues for angiogenesis and osteogenesis. Inspired by the features of ECM, we constructed a dual-component composite hydrogel comprising interpenetrating polymer networks of gelatin methacryloyl (GelMA) and deoxyribonucleic acid (DNA). Within the composite hydrogel, the GelMA network serves as the backbone for mechanical and biological stability, whereas the DNA network realizes dynamic capabilities (e.g., stress relaxation), thereby promoting cell proliferation and osteogenic differentiation. Furthermore, functional aptamers (Apt19S and AptV) are readily attached to the DNA network to recruit bone marrow mesenchymal stem cells (BMSCs) and achieve sustained release of loaded vascular endothelial growth factor towards angiogenesis. Our results showed that the composite hydrogel could facilitate the adhesion of BMSCs, promote osteogenic differentiation by activating focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/β-Catenin signaling pathway, and eventually enhance vascularized bone regeneration. This study shows that the multifunctional composite hydrogel of GelMA and DNA can successfully simulate the biological functions of natural bone ECM and has great potential for repairing bone defects.

摘要

生物活性水凝胶材料在骨组织工程领域具有巨大的应用潜力。然而,制备能够模拟天然骨细胞外基质(ECM)的功能性水凝胶仍然是一项挑战,因为它们需要提供机械支撑并体现促进血管生成和骨生成的生理信号。受ECM特性的启发,我们构建了一种双组分复合水凝胶,它由甲基丙烯酰化明胶(GelMA)和脱氧核糖核酸(DNA)的互穿聚合物网络组成。在复合水凝胶中,GelMA网络作为机械和生物稳定性的骨架,而DNA网络实现动态功能(如应力松弛),从而促进细胞增殖和成骨分化。此外,功能性适体(Apt19S和AptV)易于附着在DNA网络上,以募集骨髓间充质干细胞(BMSCs)并实现负载的血管内皮生长因子向血管生成的持续释放。我们的结果表明,复合水凝胶能够促进BMSCs的黏附,通过激活黏着斑激酶(FAK)/磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)/β-连环蛋白信号通路促进成骨分化,并最终增强血管化骨再生。这项研究表明,GelMA和DNA的多功能复合水凝胶能够成功模拟天然骨ECM的生物学功能,在修复骨缺损方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/737dfda53060/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/1cffbff2bcf3/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/cef9bc567069/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/3c786c3f3545/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/b38c51c95758/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/8288fd28d760/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/59f9a1ade7a3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/cb79a90e6de4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/8d474fad7ce9/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/737dfda53060/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/1cffbff2bcf3/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/cef9bc567069/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/3c786c3f3545/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/b38c51c95758/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/8288fd28d760/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/59f9a1ade7a3/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/cb79a90e6de4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/8d474fad7ce9/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef7a/11404060/737dfda53060/gr7.jpg

相似文献

[1]
ECM-mimicking composite hydrogel for accelerated vascularized bone regeneration.

Bioact Mater. 2024-9-4

[2]
3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects.

Mater Today Bio. 2022-8-8

[3]
[Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β to promote the repair of skull defects].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021-7-15

[4]
Amyloid Fibril and Clay Nanosheet Dual-Nanoengineered DNA Dynamic Hydrogel for Vascularized Bone Regeneration.

ACS Nano. 2023-9-12

[5]
Self-Adhesive Hydrogel Biomimetic Periosteum to Promote Critical-Size Bone Defect Repair via Synergistic Osteogenesis and Angiogenesis.

ACS Appl Mater Interfaces. 2022-8-17

[6]
A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis.

Mater Sci Eng C Mater Biol Appl. 2021-2

[7]
Self-assembled peptide hydrogel loaded with functional peptide Dentonin accelerates vascularized bone tissue regeneration in critical-size bone defects.

Regen Biomater. 2024-8-23

[8]
GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances.

Biomater Res. 2023-9-15

[9]
A composite hydrogel loaded with the processed pyritum promotes bone repair via stimulate the osteogenic differentiation of BMSCs.

Biomater Adv. 2024-6

[10]
Biomimetic Hydrogels Loaded with Nanofibers Mediate Sustained Release of pDNA and Promote In Situ Bone Regeneration.

Macromol Biosci. 2021-4

引用本文的文献

[1]
Copper Ion and Tannic Acid Polyphenol-Metal Scaffold Loaded with Curcumin Promote Skin Wound Healing.

ACS Omega. 2025-8-15

[2]
Biomimetic periosteum combining BMP-2-loaded M2 macrophage-derived exosomes for enhanced bone defect repair.

Front Bioeng Biotechnol. 2025-8-1

[3]
Cyclodextrin-Based Supramolecular Hydrogels in Tissue Engineering and Regenerative Medicine.

Molecules. 2025-7-31

[4]
Programmable DNA-based biomaterials for bone tissue engineering.

Fundam Res. 2025-1-2

[5]
Catalyst-modulated hydrogel dynamics for decoupling viscoelasticity and directing macrophage fate for diabetic wound healing.

Bioact Mater. 2025-7-5

[6]
Bionic Nanostructures Create Mechanical Signals to Mediate the Composite Structural Bone Regeneration Through Multi-System Regulation.

Adv Sci (Weinh). 2025-8

[7]
ECM remodeling by PDGFRβ+ dental pulp stem cells drives angiogenesis and pulp regeneration via integrin signaling.

Stem Cell Res Ther. 2025-6-3

[8]
Cell-Free Fat Extract (Ceffe) Combined with GelMA Hydrogel to Improve the Survival Rate of Random Skin Flaps in Mice.

ACS Biomater Sci Eng. 2025-7-14

[9]
Mussel-Inspired Hydrogel Applied to Wound Healing: A Review and Future Prospects.

Biomimetics (Basel). 2025-3-26

[10]
Enhanced Osteogenic Differentiation of hMSCs Using BMP@ZIF-8-Loaded GelMA Nanocomposite Hydrogels with Controlled BMP-2 Release.

ACS Omega. 2025-3-11

本文引用的文献

[1]
A Gelatin/Alginate Double Network Hydrogel Nerve Guidance Conduit Fabricated by a Chemical-Free Gamma Radiation for Peripheral Nerve Regeneration.

Adv Healthc Mater. 2024-8

[2]
Enhancing Mucoadhesive Properties of Gelatin through Chemical Modification with Unsaturated Anhydrides.

Biomacromolecules. 2024-3-11

[3]
Amyloid Fibril and Clay Nanosheet Dual-Nanoengineered DNA Dynamic Hydrogel for Vascularized Bone Regeneration.

ACS Nano. 2023-9-12

[4]
Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture.

Nat Nanotechnol. 2023-12

[5]
Hydrogel viscoelasticity modulates migration and fusion of mesenchymal stem cell spheroids.

Bioeng Transl Med. 2022-12-27

[6]
Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models.

Adv Mater. 2023-12

[7]
DNA hydrogels for bone regeneration.

Proc Natl Acad Sci U S A. 2023-4-25

[8]
Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances.

Adv Mater. 2024-2

[9]
Bioinspired Mild Photothermal Effect-Reinforced Multifunctional Fiber Scaffolds Promote Bone Regeneration.

ACS Nano. 2023-4-11

[10]
Bone ECM-like 3D Printing Scaffold with Liquid Crystalline and Viscoelastic Microenvironment for Bone Regeneration.

ACS Nano. 2022-12-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索