Suppr超能文献

使用无监督机器学习技术的基于车辆特定功率的排放建模。

Vehicle-specific power-based emission modeling using unsupervised machine learning techniques.

作者信息

Chowdappa Chandrashekar, Chatterjee Pritha, Pawar Digvijay S

机构信息

Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, India.

出版信息

Environ Sci Pollut Res Int. 2025 Jun;32(27):16120-16141. doi: 10.1007/s11356-025-36569-z. Epub 2025 Jun 23.

Abstract

Precise evaluation of vehicular emissions in real-world conditions is essential for assessing air quality and determining the efficacy of emission control policies. A critical research gap exists regarding the comparative study between Bharat Stage VI (BS-VI) and BS-VI compliant vehicles in various diverse Indian driving conditions. Laboratory-based measurement often fails to captures detailed emission profiles in complex traffic conditions. This study addresses this gap by analyzing the emissions from BS-IV petrol, BS-IV diesel, and BS-VI petrol vehicles in Indian driving conditions using a portable emission measurement system (PEMS). We developed a novel framework that integrates vehicle specific power (VSP) with unsupervised techniques to identify and analyze the distinct emission profiles over various driving conditions. The best clustering algorithm's results (k means) were used to compare and assess the emissions characteristics of BS-VI and BS-IV vehicles under various driving conditions. Result showed that CO and NO emissions were highest for all three vehicle types during transitions from idle to minor acceleration and lowest during idling/creeping. BS-VI petrol vehicles demonstrated a substantial decrease (25 to 90%) in NO emissions compared to BS-IV petrol vehicles across different driving conditions. However, the difference in CO emissions between BS-IV and BS-VI petrol vehicles was minimal (5%). The developed models can be a decision-support tool for policymakers to encourage responsible driving behavior and reduce vehicular emissions. This research is notable for its accurate, data-driven representation of real-world emissions. It offers policymakers a crucial tool for assessing emission regulations and driving patterns, encouraging eco-friendly driving practices.

摘要

在实际工况下精确评估车辆排放对于评估空气质量和确定排放控制政策的有效性至关重要。在印度各种不同的驾驶条件下,关于国六(BS-VI)与符合国六标准的车辆之间的比较研究存在一个关键的研究空白。基于实验室的测量往往无法捕捉复杂交通状况下的详细排放特征。本研究通过使用便携式排放测量系统(PEMS)分析印度驾驶条件下国四汽油车、国四柴油车和国六汽油车的排放,填补了这一空白。我们开发了一个新颖的框架,将车辆特定功率(VSP)与无监督技术相结合,以识别和分析不同驾驶条件下的独特排放特征。使用最佳聚类算法(k均值)的结果来比较和评估国六与国四车辆在各种驾驶条件下的排放特性。结果表明,在从怠速到轻微加速的过渡过程中,所有三种车型的一氧化碳(CO)和氮氧化物(NO)排放最高,而在怠速/蠕动过程中最低。在不同驾驶条件下,国六汽油车的NO排放量相比国四汽油车大幅下降(25%至90%)。然而,国四与国六汽油车之间的CO排放差异最小(5%)。所开发的模型可以成为政策制定者鼓励负责任驾驶行为和减少车辆排放的决策支持工具。这项研究因其对实际排放的准确、数据驱动的呈现而值得关注。它为政策制定者提供了一个评估排放法规和驾驶模式的关键工具,鼓励环保驾驶行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验