Schweitzer Richard, Doering Mara, Seel Thomas, Raisch Jörg, Rolfs Martin
Centro Interdipartimentale di Mente e Cervello, Universita degli Studi di Trento.
Department of Psychology, Humboldt-Universitat zu Berlin.
Psychol Rev. 2025 Jun 23. doi: 10.1037/rev0000574.
During active visual exploration, saccadic eye movements rapidly shift the visual image across the human retina. Although these high-speed shifts occur at a high rate and introduce considerable amounts of motion smear during natural vision, our perceptual experience is oblivious to it-a phenomenon known as saccadic omission. Using tachistoscopic displays of natural scenes, we rendered saccade-induced smear highly conspicuous. By manipulating perisaccadic display durations, we studied the dynamics of smear in a time-resolved manner, assessing discrimination performance of smeared scenes, as well as smear amount and orientation. Both measures showed distinctive, U-shaped time courses throughout the saccade, indicating that generation and reduction of smear occurred during saccades. Moreover, low spatial frequencies and orientations parallel to the direction of the ongoing saccade were identified as the predominant visual features accessible in motion smear. We explain these findings using computational models that assume no more than saccadic velocity and human contrast sensitivity profiles and present a motion-filter model capable of predicting observers' perceived amount of smear based on their eyes' trajectories, suggesting a direct link between perceptual and saccade dynamics. Replays of the visual consequences of saccades during fixation led to virtually identical results as actively making saccades, whereas the additional simulation of perisaccadic contrast suppression heavily reduced this similarity, providing strong evidence that this suppression explained neither our findings nor the phenomenon of omission. Saccadic omission of motion smear may be understood as emerging naturally from the interplay of the retinal consequences of saccades and early visual processing. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
在主动视觉探索过程中,眼球的快速扫视会使视觉图像在人眼视网膜上迅速移动。尽管这些高速移动在自然视觉中以很高的频率发生,并会产生大量的运动模糊,但我们的感知体验却对此浑然不觉——这一现象被称为扫视遗漏。我们利用对自然场景的速示器显示,使扫视引起的模糊变得非常明显。通过操纵扫视周围的显示持续时间,我们以时间分辨的方式研究了模糊的动态变化,评估了模糊场景的辨别性能以及模糊量和方向。这两种测量方法在整个扫视过程中都呈现出独特的U形时间进程,表明模糊的产生和减少发生在扫视期间。此外,低空间频率以及与正在进行的扫视方向平行的方向被确定为运动模糊中可感知的主要视觉特征。我们使用计算模型来解释这些发现,这些模型仅假设了扫视速度和人类对比度敏感度分布,并提出了一个运动滤波器模型,该模型能够根据观察者眼睛的轨迹预测他们感知到的模糊量,这表明了感知与扫视动态之间存在直接联系。在注视期间对扫视的视觉后果进行重放所得到的结果与主动进行扫视几乎相同,而对扫视周围对比度抑制的额外模拟则大大降低了这种相似性,这有力地证明了这种抑制既不能解释我们的发现,也不能解释遗漏现象。扫视对运动模糊的遗漏可能被理解为是由扫视在视网膜上产生的后果与早期视觉处理之间的相互作用自然产生的。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)