Birk Nick, Kulkarni Bharati, Bhogadi Santhi, Aggarwal Aastha, Walia Gagandeep Kaur, Gupta Vipin, Rani Usha, Mahajan Hemant, Kinra Sanjay, Mallinson Poppy A C
Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom.
Reproductive and Child Health and Nutrition, Indian Council of Medical Research, New Delhi, India.
PLOS Digit Health. 2025 Jun 23;4(6):e0000671. doi: 10.1371/journal.pdig.0000671. eCollection 2025 Jun.
Bioelectrical impedance analysis (BIA) is commonly used as a lower-cost measurement of body composition as compared to dual-energy X-ray absorptiometry (DXA) in large-scale epidemiological studies. However, existing equations for body composition based on BIA measures may not generalize well to all populations. We combined BIA measurements (TANITA BC-418) with skinfold thickness, body circumferences, and grip strength to develop equations to predict six DXA-measured body composition parameters in a cohort of Indian adults using machine learning techniques. The participants were split into training (80%, 1297 males and 1133 females) and testing (20%, 318 males and 289 females) data to develop and validate the performance of equations for total body fat mass (kg), total body lean mass (kg), total body fat percentage (%), trunk fat percentage (%), L1-L4 fat percentage (%), and total appendicular lean mass (kg), separately for males and females. Our novel equations outperformed existing equations for each of these body composition parameters. For example, the mean absolute error for total body fat mass was 1.808 kg for males and 2.054 kg for females using the TANITA's built-in estimation algorithm, 2.105 kg for males and 2.995 kg for females using Durnin-Womersley equations, and 0.935 kg for males and 0.976 kg for females using our novel equations. Our findings demonstrate that supplementing body composition estimates from BIA devices with simple anthropometric measures can greatly improve the validity of BIA-measured body composition in South Asians. This approach could be extended to other BIA devices and populations to improve the performance of BIA devices. Our equations are made available for use by other researchers.
在大规模流行病学研究中,与双能X线吸收法(DXA)相比,生物电阻抗分析(BIA)通常被用作一种成本较低的身体成分测量方法。然而,基于BIA测量的现有身体成分方程可能无法很好地适用于所有人群。我们将BIA测量值(百利达BC - 418)与皮褶厚度、身体周长和握力相结合,运用机器学习技术开发方程,以预测一组印度成年人的六个DXA测量的身体成分参数。参与者被分为训练组(80%,1297名男性和1133名女性)和测试组(20%,318名男性和289名女性)数据,分别针对男性和女性开发并验证总脂肪量(kg)、总瘦体重(kg)、总脂肪百分比(%)、躯干脂肪百分比(%)、L1 - L4脂肪百分比(%)和总附属肢体瘦体重(kg)的方程性能。我们的新方程在这些身体成分参数中的每一个方面都优于现有方程。例如,使用百利达内置估计算法时,男性总脂肪量的平均绝对误差为1.808 kg,女性为2.054 kg;使用杜宁 - 沃姆斯利方程时,男性为2.105 kg,女性为2.995 kg;而使用我们的新方程时,男性为0.935 kg,女性为0.976 kg。我们的研究结果表明,用简单的人体测量指标补充BIA设备的身体成分估计值,可以大大提高南亚人群中BIA测量的身体成分的有效性。这种方法可以扩展到其他BIA设备和人群,以提高BIA设备的性能。我们的方程可供其他研究人员使用。