Suppr超能文献

异常球诱发的偏差反应反映了小鼠初级视觉皮层中复杂的上下文依赖期望。

Oddball Evoked Deviant Responses Reflect Complex Context-Dependent Expectations in Mouse V1.

作者信息

Knudstrup Scott G, Reyes Catalina Martinez, Jensen Cambria M, Schecter Rachel W, Frank Mac Kenzie, Gavornik Jeffrey P

机构信息

Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts 02215.

Neurophotonics Center, Boston University, Boston, Massachusetts 02215.

出版信息

J Neurosci. 2025 Jul 16;45(29):e1859242025. doi: 10.1523/JNEUROSCI.1859-24.2025.

Abstract

Evoked responses in the mouse primary visual cortex can be modulated by the temporal context in which visual inputs are presented. Oddball stimuli embedded in a sequence of regularly repeated visual elements have been shown to drive relatively large deviant responses, a finding that is generally consistent with the theory that cortical circuits implement a form of predictive coding. These results can be confounded by short-term adaptation effects, however, that make interpretation difficult. Here we use various forms of the oddball paradigm to disentangle temporal and ordinal components of the deviant response, showing that it is a complex phenomenon affected by temporal structure, ordinal expectation, and event frequency. Specifically, we use visually evoked potentials to show that deviant responses occur over a large range of time in male and female mice, cannot be explained by a simple adaptation model, scale with predictability, and are modulated by violations of both first- and second-order sequential expectations. We also show that visual sequences can lead to long-term plasticity in some circumstances.

摘要

小鼠初级视觉皮层中的诱发反应可受到视觉输入呈现的时间背景的调节。嵌入一系列规则重复视觉元素序列中的异常刺激已被证明会引发相对较大的偏差反应,这一发现总体上与皮层回路实施一种预测编码形式的理论一致。然而,这些结果可能会被短期适应效应所混淆,这使得解释变得困难。在这里,我们使用各种形式的异常刺激范式来区分偏差反应的时间和顺序成分,表明它是一种受时间结构、顺序期望和事件频率影响的复杂现象。具体而言,我们使用视觉诱发电位来表明,偏差反应在雄性和雌性小鼠的很长一段时间内都会出现,不能用简单的适应模型来解释,会随着可预测性而变化,并且会受到一阶和二阶顺序期望违背的调节。我们还表明,在某些情况下,视觉序列可导致长期可塑性。

相似文献

本文引用的文献

5
7
8
Brain signal predictions from multi-scale networks using a linearized framework.基于线性化框架的多尺度网络的脑信号预测。
PLoS Comput Biol. 2022 Aug 12;18(8):e1010353. doi: 10.1371/journal.pcbi.1010353. eCollection 2022 Aug.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验