文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用机器学习方法预测乳腺癌新辅助化疗的病理完全缓解。

Predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer using a machine learning approach.

机构信息

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China.

Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.

出版信息

Breast Cancer Res. 2024 Oct 29;26(1):148. doi: 10.1186/s13058-024-01905-7.


DOI:10.1186/s13058-024-01905-7
PMID:39472970
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11520773/
Abstract

BACKGROUND: For patients with breast cancer undergoing neoadjuvant chemotherapy (NACT), most of the existing prediction models of pathologic complete response (pCR) using clinicopathological features were based on standard statistical models like logistic regression, while models based on machine learning mostly utilized imaging data and/or gene expression data. This study aims to develop a robust and accessible machine learning model to predict pCR using clinicopathological features alone, which can be used to facilitate clinical decision-making in diverse settings. METHODS: The model was developed and validated within the National Cancer Data Base (NCDB, 2018-2020) and an external cohort at the University of Chicago (2010-2020). We compared logistic regression and machine learning models, and examined whether incorporating quantitative clinicopathological features improved model performance. Decision curve analysis was conducted to assess the model's clinical utility. RESULTS: We identified 56,209 NCDB patients receiving NACT (pCR rate: 34.0%). The machine learning model incorporating quantitative clinicopathological features showed the best discrimination performance among all the fitted models [area under the receiver operating characteristic curve (AUC): 0.785, 95% confidence interval (CI): 0.778-0.792], along with outstanding calibration performance. The model performed best among patients with hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2-) breast cancer (AUC: 0.817, 95% CI: 0.802-0.832); and by adopting a 7% prediction threshold, the model achieved 90.5% sensitivity and 48.8% specificity, with decision curve analysis finding a 23.1% net reduction in chemotherapy use. In the external testing set of 584 patients (pCR rate: 33.4%), the model maintained robust performance both overall (AUC: 0.711, 95% CI: 0.668-0.753) and in the HR+/HER2- subgroup (AUC: 0.810, 95% CI: 0.742-0.878). CONCLUSIONS: The study developed a machine learning model ( https://huolab.cri.uchicago.edu/sample-apps/pcrmodel ) to predict pCR in breast cancer patients undergoing NACT that demonstrated robust discrimination and calibration performance. The model performed particularly well among patients with HR+/HER2- breast cancer, having the potential to identify patients who are less likely to achieve pCR and can consider alternative treatment strategies over chemotherapy. The model can also serve as a robust baseline model that can be integrated with smaller datasets containing additional granular features in future research.

摘要

背景:对于接受新辅助化疗(NACT)的乳腺癌患者,大多数使用临床病理特征的病理完全缓解(pCR)预测模型都是基于逻辑回归等标准统计模型,而基于机器学习的模型主要利用影像学数据和/或基因表达数据。本研究旨在开发一个稳健且易于使用的机器学习模型,仅使用临床病理特征预测 pCR,可用于在各种环境中辅助临床决策。

方法:该模型在国家癌症数据库(NCDB,2018-2020 年)和芝加哥大学的一个外部队列(2010-2020 年)中进行了开发和验证。我们比较了逻辑回归和机器学习模型,并检验了纳入定量临床病理特征是否能提高模型性能。通过决策曲线分析评估模型的临床实用性。

结果:我们在 NCDB 中识别了 56209 名接受 NACT 的患者(pCR 率:34.0%)。纳入定量临床病理特征的机器学习模型在所有拟合模型中显示出最佳的区分性能[受试者工作特征曲线下面积(AUC):0.785,95%置信区间(CI):0.778-0.792],同时具有出色的校准性能。该模型在激素受体阳性/人表皮生长因子受体 2 阴性(HR+/HER2-)乳腺癌患者中表现最佳(AUC:0.817,95%CI:0.802-0.832);通过采用 7%的预测阈值,该模型实现了 90.5%的敏感性和 48.8%的特异性,决策曲线分析发现化疗使用率降低了 23.1%。在 584 名患者的外部测试集中(pCR 率:33.4%),该模型在整体和 HR+/HER2-亚组中均表现出稳健的性能(AUC:0.711,95%CI:0.668-0.753;AUC:0.810,95%CI:0.742-0.878)。

结论:本研究开发了一种机器学习模型(https://huolab.cri.uchicago.edu/sample-apps/pcrmodel),用于预测接受 NACT 的乳腺癌患者的 pCR,该模型表现出良好的区分度和校准性能。该模型在 HR+/HER2-乳腺癌患者中表现尤其出色,有可能识别出不太可能实现 pCR 的患者,并考虑替代化疗的治疗策略。该模型还可以作为一个稳健的基线模型,可在未来研究中与包含更多粒度特征的较小数据集进行整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/cb2f38c30da6/13058_2024_1905_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/d32141f539c0/13058_2024_1905_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/1718bed9b94b/13058_2024_1905_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/4fb97de87b24/13058_2024_1905_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/cb2f38c30da6/13058_2024_1905_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/d32141f539c0/13058_2024_1905_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/1718bed9b94b/13058_2024_1905_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/4fb97de87b24/13058_2024_1905_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f9/11520773/cb2f38c30da6/13058_2024_1905_Fig4_HTML.jpg

相似文献

[1]
Predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer using a machine learning approach.

Breast Cancer Res. 2024-10-29

[2]
Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set.

Breast Cancer Res Treat. 2018-10-16

[3]
Using Machine Learning Models to Predict Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer.

JCO Clin Cancer Inform. 2024-11

[4]
Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model.

Breast Cancer Res. 2025-2-27

[5]
Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer.

PeerJ. 2024

[6]
Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning.

Eur J Surg Oncol. 2024-12

[7]
Prediction of pathologic complete response to neoadjuvant chemotherapy using machine learning models in patients with breast cancer.

Breast Cancer Res Treat. 2021-10

[8]
Real-world data on breast pathologic complete response and disease-free survival after neoadjuvant chemotherapy for hormone receptor-positive, human epidermal growth factor receptor-2-negative breast cancer: a multicenter, retrospective study in China.

World J Surg Oncol. 2022-9-29

[9]
Individualized model for predicting pathological complete response to neoadjuvant chemotherapy in patients with breast cancer: A multicenter study.

Front Endocrinol (Lausanne). 2022

[10]
Predictive factors of pathologic complete response of HER2-positive breast cancer after preoperative chemotherapy with trastuzumab: development of a specific predictor and study of its utilities using decision curve analysis.

Breast Cancer Res Treat. 2017-1

引用本文的文献

[1]
Radiomics-based Machine Learning Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Using Physiologically Decomposed Diffusion-weighted MRI.

Radiol Imaging Cancer. 2025-7

[2]
Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review.

Biol Direct. 2025-6-23

[3]
Comparing Random Survival Forests and Cox Regression for Nonresponders to Neoadjuvant Chemotherapy Among Patients With Breast Cancer: Multicenter Retrospective Cohort Study.

J Med Internet Res. 2025-4-8

本文引用的文献

[1]
Bilateral asymmetry of quantitative parenchymal kinetics at ultrafast DCE-MRI predict response to neoadjuvant chemotherapy in patients with HER2+ breast cancer.

Magn Reson Imaging. 2023-12

[2]
Association of HER2DX with pathological complete response and survival outcomes in HER2-positive breast cancer.

Ann Oncol. 2023-9

[3]
Development and External Validation of a Machine Learning Model to Predict Pathological Complete Response After Neoadjuvant Chemotherapy in Breast Cancer.

J Breast Cancer. 2023-8

[4]
Evaluation of multigene assays as predictors for response to neoadjuvant chemotherapy in early-stage breast cancer patients.

NPJ Breast Cancer. 2023-5-6

[5]
Imputation and missing indicators for handling missing data in the development and deployment of clinical prediction models: A simulation study.

Stat Methods Med Res. 2023-8

[6]
Racial Disparities in Pathological Complete Response Among Patients Receiving Neoadjuvant Chemotherapy for Early-Stage Breast Cancer.

JAMA Netw Open. 2023-3-1

[7]
Response to Treatment, Racial and Ethnic Disparity, and Survival in Patients With Breast Cancer Undergoing Neoadjuvant Chemotherapy in the US.

JAMA Netw Open. 2023-3-1

[8]
Clinicopathologic Characteristics and Prognosis of ERBB2-Low Breast Cancer Among Patients in the National Cancer Database.

JAMA Oncol. 2023-4-1

[9]
CDK 4/6 inhibitors for adjuvant therapy in early breast cancer-Do we have a clear winner?

Ecancermedicalscience. 2022-8-30

[10]
Highly accurate response prediction in high-risk early breast cancer patients using a biophysical simulation platform.

Breast Cancer Res Treat. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索