文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能从苏木精-伊红染色的乳腺癌切片预测雌激素受体状态。

Predicting estrogen receptor status from HE-stained breast cancer slides using artificial intelligence.

作者信息

Høibø Maren, Spiske Ute, Pedersen André, Ytterhus Borgny, Akslen Lars A, Wik Elisabeth, Askeland Cecilie, Reinertsen Ingerid, Smistad Erik, Valla Marit

机构信息

Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.

出版信息

Front Med (Lausanne). 2025 Jun 9;12:1593143. doi: 10.3389/fmed.2025.1593143. eCollection 2025.


DOI:10.3389/fmed.2025.1593143
PMID:40552175
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12183256/
Abstract

INTRODUCTION: The estrogen receptor (ER) is routinely assessed by immunohistochemistry (IHC) in breast cancer to stratify patients into therapeutic and prognostic groups. Pathology laboratories are burdened by an increased number of biopsies, and costly and resource-demanding molecular pathology analyses. Automatic, artificial intelligence-based prediction of biological properties from hematoxylin and eosin (HE)-stained slides could increase efficiency and potentially reduce costs at laboratories. The aim of this study was to develop a model for prediction of ER status from HE-stained tissue microarrays (TMAs). Our methodology can be used as proof-of-concept for the prediction of more complex and costly molecular analyses in cancer. METHODS: In this study, TMAs from more than 2,000 Norwegian breast cancer patients were used to train and predict ER status using the clustering-constrained attention multiple-instance learning (CLAM) framework. Two patch sizes were evaluated, multi-branch and single-branch CLAM configurations were compared, and a comprehensive hyperparameter search with more than 16 000 experiments was performed. The models were evaluated on internal and external test sets. RESULTS: On the internal test set, the proposed model achieved a micro accuracy, a macro accuracy, and an area under the curve of 0.91, 0.86, and 0.95, respectively. The corresponding results on the external test set were 0.93, 0.76, and 0.91, respectively. Using larger patch sizes resulted in significantly better classification performance, while no significant differences were observed when changing CLAM configurations.

摘要

引言:在乳腺癌中,雌激素受体(ER)通常通过免疫组织化学(IHC)进行评估,以便将患者分层为不同的治疗和预后组。病理实验室因活检数量增加以及昂贵且资源需求大的分子病理学分析而负担沉重。基于苏木精和伊红(HE)染色玻片的生物特性自动人工智能预测可以提高效率,并有可能降低实验室成本。本研究的目的是开发一种从HE染色组织微阵列(TMA)预测ER状态的模型。我们的方法可用作癌症中更复杂和昂贵的分子分析预测的概念验证。 方法:在本研究中,使用来自2000多名挪威乳腺癌患者的TMA,采用聚类约束注意力多实例学习(CLAM)框架训练和预测ER状态。评估了两种补丁大小,比较了多分支和单分支CLAM配置,并进行了超过16000次实验的全面超参数搜索。在内部和外部测试集上对模型进行评估。 结果:在内部测试集上,所提出的模型分别实现了微准确率、宏准确率和曲线下面积为0.91、0.86和0.95。在外部测试集上的相应结果分别为0.93、0.76和0.91。使用更大的补丁大小导致显著更好的分类性能,而改变CLAM配置时未观察到显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/bfd5ff92a5c2/fmed-12-1593143-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/3afa3c0d8158/fmed-12-1593143-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/f508d1b2f543/fmed-12-1593143-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/1a7a66023008/fmed-12-1593143-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/a932436f1d3e/fmed-12-1593143-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/bfd5ff92a5c2/fmed-12-1593143-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/3afa3c0d8158/fmed-12-1593143-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/f508d1b2f543/fmed-12-1593143-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/1a7a66023008/fmed-12-1593143-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/a932436f1d3e/fmed-12-1593143-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca3d/12183256/bfd5ff92a5c2/fmed-12-1593143-g0005.jpg

相似文献

[1]
Predicting estrogen receptor status from HE-stained breast cancer slides using artificial intelligence.

Front Med (Lausanne). 2025-6-9

[2]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[3]
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.

Health Technol Assess. 2008-6

[4]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[5]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[6]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[8]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[9]
Adefovir dipivoxil and pegylated interferon alfa-2a for the treatment of chronic hepatitis B: a systematic review and economic evaluation.

Health Technol Assess. 2006-8

[10]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

本文引用的文献

[1]
Toward Accurate Deep Learning-Based Prediction of Ki67, ER, PR, and HER2 Status From H&E-Stained Breast Cancer Images.

Appl Immunohistochem Mol Morphol. 2025-5-1

[2]
Deep learning-based classification of breast cancer molecular subtypes from H&E whole-slide images.

J Pathol Inform. 2024-11-17

[3]
Towards a general-purpose foundation model for computational pathology.

Nat Med. 2024-3

[4]
Multiple instance learning for digital pathology: A review of the state-of-the-art, limitations & future potential.

Comput Med Imaging Graph. 2024-3

[5]
Focalizing regions of biomarker relevance facilitates biomarker prediction on histopathological images.

iScience. 2023-6-29

[6]
Understanding breast cancer complexity to improve patient outcomes: The St Gallen International Consensus Conference for the Primary Therapy of Individuals with Early Breast Cancer 2023.

Ann Oncol. 2023-11

[7]
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.

Cancer Cell. 2023-9-11

[8]
Estrogen Receptor Status by Immunohistochemistry Is Superior to the Ligand-Binding Assay for Predicting Response to Adjuvant Endocrine Therapy in Breast Cancer.

J Clin Oncol. 2023-3-1

[9]
H2G-Net: A multi-resolution refinement approach for segmentation of breast cancer region in gigapixel histopathological images.

Front Med (Lausanne). 2022-9-14

[10]
Transformer-based unsupervised contrastive learning for histopathological image classification.

Med Image Anal. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索