Suppr超能文献

量化单线态裂变嵌段共聚物中的激子输运

Quantifying Exciton Transport in Singlet Fission Diblock Copolymers.

机构信息

Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States.

Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States.

出版信息

J Am Chem Soc. 2022 Feb 23;144(7):3269-3278. doi: 10.1021/jacs.1c13456. Epub 2022 Feb 15.

Abstract

Singlet fission (SF) is a mechanism of exciton multiplication in organic chromophores, which has potential to drive highly efficient optoelectronic devices. Creating effective device architectures that operate by SF critically depends on electronic interactions across multiple length scales─from individual molecules to interchromophore interactions that facilitate multiexciton dephasing and exciton diffusion toward donor-acceptor interfaces. Therefore, it is imperative to understand the underpinnings of multiexciton transport and interfacial energy transfer in multichromophore systems. Interestingly, block copolymers (BCPs) can be designed to control multiscale interactions by tailoring the nature of the building blocks, yet SF dynamics are not well understood in these macromolecules. Here, we designed diblock copolymers comprising an inherent energy cleft at the interface between a block with pendent pentacene chromophores and an additional block with pendent tetracene chromophores. The singlet and triplet energy offset between the two blocks creates a driving force for exciton transport along the BCP chain in dilute solution. Using time-resolved optical spectroscopy, we have quantified the yields of key energy transfer steps, including both singlet and triplet energy transfer processes across the pentacene-tetracene interface. From this modular BCP architecture, we correlate the energy transfer time scales and relative yields with the length of each block. The ability to quantify these energy transfer processes provides valuable insights into exciton transport at critical length scales between bulk crystalline systems and small-molecule dimers─an area that has been underexplored.

摘要

单线态裂变(SF)是一种在有机发色团中激子倍增的机制,具有驱动高效光电设备的潜力。创建通过 SF 运行的有效器件结构,关键取决于跨越多个长度尺度的电子相互作用——从单个分子到促进多激子退相和激子扩散到给体-受体界面的发色团间相互作用。因此,了解多发色团体系中多激子输运和界面能量转移的基础至关重要。有趣的是,可以通过设计嵌段共聚物(BCP)来控制多尺度相互作用,从而改变构建块的性质,但这些大分子中的 SF 动力学仍未得到很好的理解。在这里,我们设计了包含固有能量隙的嵌段共聚物,该能量隙位于带有悬垂五苯发色团的嵌段与带有悬垂四苯发色团的附加嵌段之间。两个嵌段之间的单重态和三重态能量偏移为在稀溶液中沿 BCP 链的激子输运提供了驱动力。使用时间分辨光光谱法,我们量化了关键能量转移步骤的产率,包括五苯-四苯界面处的单重态和三重态能量转移过程。从这个模块化的 BCP 结构中,我们将能量转移时间尺度和相对产率与每个嵌段的长度相关联。量化这些能量转移过程的能力为在体相晶体系统和小分子二聚体之间的关键长度尺度上的激子输运提供了有价值的见解——这是一个尚未得到充分探索的领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验