Narayanan Bharath, Jiang Wei, Wang Shengbao, Sáez-Sáez Javier, Weilandt Daniel, Barcon Maria Masid, Hesselberg-Thomsen Viktor, Borodina Irina, Hatzimanikatis Vassily, Miskovic Ljubisa
Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, Switzerland.
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
Metab Eng. 2025 Sep;91:430-441. doi: 10.1016/j.ymben.2025.06.008. Epub 2025 Jun 18.
The use of kinetic models of metabolism in design-build-learn-test cycles is limited despite their potential to guide and accelerate the optimization of cell factories. This is primarily due to difficulties in constructing kinetic models capable of capturing the complexities of the fermentation conditions. Building on recent advances in kinetic-model-based strain design, we present the rational metabolic engineering of an S. cerevisiae strain designed to overproduce p-coumaric acid (p-CA), an aromatic amino acid with valuable nutritional and therapeutic applications. To this end, we built nine kinetic models of an already engineered p-CA-producing strain by integrating different types of omics data and imposing physiological constraints pertinent to the strain. These nine models contained 268 mass balances involved in 303 reactions across four compartments and could reproduce the dynamic characteristics of the strain in batch fermentation simulations. We used constraint-based metabolic control analysis to generate combinatorial designs of 3 enzyme manipulations that could increase p-CA yield on glucose while ensuring that the resulting engineering strains did not deviate far from the reference phenotype. Among 39 unique designs, 10 proved robust across the phenotypic uncertainty of the models and could reliably increase p-CA yield in nonlinear simulations. We implemented these top 10 designs in a batch fermentation setting using a promoter-swapping strategy for down-regulations and plasmids for up-regulations. Eight out of the ten designs produced higher p-CA titers than the reference strain, with 19-32 % increases at the end of fermentation. All eight designs also maintained at least 90 % of the reference strain's growth rate, indicating the critical role of the phenotypic constraint. The high experimental success of our in-silico predictions lays the foundation for accelerated design-build-test-learn cycles enabled by large-scale kinetic modeling.
尽管代谢动力学模型在指导和加速细胞工厂的优化方面具有潜力,但在设计-构建-学习-测试循环中的应用却很有限。这主要是由于构建能够捕捉发酵条件复杂性的动力学模型存在困难。基于基于动力学模型的菌株设计的最新进展,我们展示了酿酒酵母菌株的合理代谢工程,该菌株旨在过量生产对香豆酸(p-CA),这是一种具有重要营养和治疗应用的芳香族氨基酸。为此,我们通过整合不同类型的组学数据并施加与该菌株相关的生理约束,构建了一个已工程化的p-CA生产菌株的九个动力学模型。这九个模型包含268个质量平衡,涉及四个隔室中的303个反应,并且可以在分批发酵模拟中再现该菌株的动态特征。我们使用基于约束的代谢控制分析来生成3种酶操作的组合设计,这些设计可以提高葡萄糖上的p-CA产量,同时确保所得的工程菌株不会偏离参考表型太远。在39种独特设计中,有10种在模型的表型不确定性范围内表现稳健,并且可以在非线性模拟中可靠地提高p-CA产量。我们使用启动子交换策略进行下调和质粒进行上调,在分批发酵环境中实施了这前10种设计。十种设计中有八种产生的p-CA滴度高于参考菌株,在发酵结束时增加了19-32%。所有八种设计还保持了至少90%的参考菌株生长速率,表明表型约束的关键作用。我们的计算机模拟预测在实验上的高度成功为大规模动力学建模实现的加速设计-构建-测试-学习循环奠定了基础。