Joore Indi P, Shehata Sawsan, Muffels Irena, Castro-Alpízar Jose, Jiménez-Curiel Elena, Nagyova Emilia, Levy Natacha, Tang Ziqin, Smit Kimberly, Vermeij Wilbert P, Rodenburg Richard, Schiffelers Raymond, Nieuwenhuis Edward E S, van Hasselt Peter M, Fuchs Sabine A, Koppens Martijn A J
Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.
PLoS Biol. 2025 Jun 24;23(6):e3003207. doi: 10.1371/journal.pbio.3003207. eCollection 2025 Jun.
Mutations in the mitochondrial genome can cause maternally inherited diseases, cancer, and aging-related conditions. Recent technological progress now enables the creation and correction of mutations in the mitochondrial genome, but it remains relatively unknown how patients with primary mitochondrial disease can benefit from this technology. Here, we demonstrate the potential of the double-stranded DNA deaminase toxin A-derived cytosine base editor (DdCBE) to develop disease models and therapeutic strategies for mitochondrial disease in primary human cells. Introduction of the m.15150G > A mutation in liver organoids resulted in organoid lines with varying degrees of heteroplasmy and correspondingly reduced ATP production, providing a unique model to study functional consequences of different levels of heteroplasmy of this mutation. Correction of the m.4291T > C mutation in patient-derived fibroblasts restored mitochondrial membrane potential. DdCBE generated sustainable edits with high specificity and product purity. To prepare for clinical application, we found that mRNA-mediated mitochondrial base editing resulted in increased efficiency and cellular viability compared to DNA-mediated editing. Moreover, we showed efficient delivery of the mRNA mitochondrial base editors using lipid nanoparticles, which is currently the most advanced non-viral in vivo delivery system for gene products. Our study thus demonstrates the potential of mitochondrial base editing to not only generate unique in vitro models to study these diseases, but also to functionally correct mitochondrial mutations in patient-derived cells for future therapeutic purposes.
线粒体基因组中的突变可导致母系遗传疾病、癌症和与衰老相关的病症。最近的技术进步使得在线粒体基因组中创建和纠正突变成为可能,但原发性线粒体疾病患者如何从这项技术中获益仍相对未知。在这里,我们展示了双链DNA脱氨酶毒素A衍生的胞嘧啶碱基编辑器(DdCBE)在原发性人类细胞中开发线粒体疾病模型和治疗策略的潜力。在肝类器官中引入m.15150G>A突变导致了具有不同程度异质性的类器官系,并相应地降低了ATP的产生,为研究该突变不同水平异质性的功能后果提供了一个独特的模型。在患者来源的成纤维细胞中纠正m.4291T>C突变恢复了线粒体膜电位。DdCBE产生了具有高特异性和产物纯度的可持续编辑。为临床应用做准备,我们发现与DNA介导的编辑相比,mRNA介导的线粒体碱基编辑提高了效率和细胞活力。此外,我们展示了使用脂质纳米颗粒高效递送mRNA线粒体碱基编辑器,脂质纳米颗粒是目前用于基因产物的最先进的非病毒体内递送系统。因此,我们的研究证明了线粒体碱基编辑不仅有潜力生成独特的体外模型来研究这些疾病,而且有潜力在患者来源的细胞中对线粒体突变进行功能纠正,以用于未来的治疗目的。