Suppr超能文献

在小鼠和猪动物模型中对视网膜下递送的Cas9核糖核蛋白的评估突出了基因药物治疗转化的关键考虑因素。

Evaluation of subretinally delivered Cas9 ribonucleoproteins in murine and porcine animal models highlights key considerations for therapeutic translation of genetic medicines.

作者信息

Wei Spencer C, Cantor Aaron J, Walleshauser Jack, Mepani Rina, Melton Kory, Bans Ashil, Khekare Prachi, Gupta Suhani, Wang Jonathan, Soares Craig, Kiwan Radwan, Lee Jieun, McCawley Shannon, Jani Vihasi, Leong Weng In, Shahi Pawan K, Chan Jean, Boivin Pierre, Otoupal Peter, Pattnaik Bikash R, Gamm David M, Saha Krishanu, Gowen Benjamin G, Haak-Frendscho Mary, Janatpour Mary J, Silverman Adam P

机构信息

Spotlight Therapeutics, Hayward, CA, USA.

McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS One. 2025 Jun 24;20(6):e0317387. doi: 10.1371/journal.pone.0317387. eCollection 2025.

Abstract

Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species. Editing occurs in retinal pigmented epithelium (RPE) and photoreceptor cells, with favorable tolerability in both species. Using transgenic reporter strains, we determine that editing primarily occurs close to the site of administration, within the bleb region associated with subretinal injection. Our results show that subretinal administration of BE-eRNPs in mice mediates base editing of up to 12% of the total neural retina, with an average rate of 7% observed at the highest dose tested. In contrast, a substantially lower editing efficiency was observed in minipigs; even with direct quantification of only the treated region, a maximum base editing rate of 1.5%, with an average rate of <1%, was observed. Our data highlight the importance of species consideration in preclinical studies for the development of genetic medicines targeting the eye and provide an example of a lack of translation between small and larger animal models in the context of subretinal administration of Cas9 eRNPs.

摘要

包括CRISPR/Cas技术在内的基因药物,在解决遗传性视网膜疾病和其他适应症中尚未满足的医疗需求方面展现出巨大前景;然而,治疗药物的开发仍面临挑战。在此,我们通过使用小鼠和猪动物模型进行视网膜下给药,在体内评估工程化Cas9核糖核蛋白(eRNP)介导的基因组编辑。视网膜下注射腺嘌呤碱基编辑器和诱导双链断裂的Cas9核酸酶eRNP在这两种物种中均介导基因组编辑。编辑发生在视网膜色素上皮(RPE)和光感受器细胞中,两种物种均具有良好的耐受性。使用转基因报告菌株,我们确定编辑主要发生在给药部位附近,即在与视网膜下注射相关的气泡区域内。我们的结果表明,在小鼠中视网膜下注射BE-eRNP介导的碱基编辑可达整个神经视网膜的12%,在测试的最高剂量下观察到的平均编辑率为7%。相比之下,在小型猪中观察到的编辑效率要低得多;即使仅直接量化处理区域,观察到的最大碱基编辑率为1.5%,平均编辑率<1%。我们的数据强调了在针对眼睛的基因药物开发的临床前研究中考虑物种因素的重要性,并提供了一个在视网膜下注射Cas9 eRNP的情况下,小动物模型和大动物模型之间缺乏转化的例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226f/12186880/dae78a1c05bd/pone.0317387.g001.jpg

相似文献

5
Unlocking the potential of CRISPR-Cas9 for cystic fibrosis: A systematic literature review.
Gene. 2025 Mar 20;942:149257. doi: 10.1016/j.gene.2025.149257. Epub 2025 Jan 18.
6
Interventions for central serous chorioretinopathy: a network meta-analysis.
Cochrane Database Syst Rev. 2025 Jun 16;6(6):CD011841. doi: 10.1002/14651858.CD011841.pub3.
9
CRISPR-Cas Genome Editing in Human Lungs to Rewire the Translational Path of Genome-Targeting Therapeutics.
Hum Gene Ther. 2024 Jun;35(11-12):374-387. doi: 10.1089/hum.2023.223. Epub 2024 May 23.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.

本文引用的文献

1
Patient-Specific In Vivo Gene Editing to Treat a Rare Genetic Disease.
N Engl J Med. 2025 Jun 12;392(22):2235-2243. doi: 10.1056/NEJMoa2504747. Epub 2025 May 15.
2
Direct delivery of Cas9 or base editor protein and guide RNA complex enables genome editing in the retina.
Mol Ther Nucleic Acids. 2024 Sep 30;35(4):102349. doi: 10.1016/j.omtn.2024.102349. eCollection 2024 Dec 10.
4
Revolutionizing therapy with CRISPR/Cas genome editing: breakthroughs, opportunities and challenges.
Front Genome Ed. 2024 Feb 1;6:1342193. doi: 10.3389/fgeed.2024.1342193. eCollection 2024.
5
Genome editing in the treatment of ocular diseases.
Exp Mol Med. 2023 Aug;55(8):1678-1690. doi: 10.1038/s12276-023-01057-2. Epub 2023 Aug 1.
6
Adeno-Associated Virus (AAV) - Based Gene Therapies for Retinal Diseases: Where are We?
Appl Clin Genet. 2023 May 30;16:111-130. doi: 10.2147/TACG.S383453. eCollection 2023.
7
Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies.
Front Neurosci. 2023 Apr 3;17:1132179. doi: 10.3389/fnins.2023.1132179. eCollection 2023.
8
Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases.
FEBS J. 2023 Nov;290(22):5248-5269. doi: 10.1111/febs.16771. Epub 2023 Mar 27.
9
Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates.
Sci Adv. 2023 Jan 13;9(2):eadd4623. doi: 10.1126/sciadv.add4623. Epub 2023 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验