Suppr超能文献

一种通过基因表达数据利用机器学习进行种族特异性前列腺癌检测的框架:特征选择优化方法。

A Framework for Race-Specific Prostate Cancer Detection Using Machine Learning Through Gene Expression Data: Feature Selection Optimization Approach.

作者信息

Agustriawan David, Mulia Adithama, Overbeek Marlinda Vasty, Kurniawan Vincent, Syechlo Jheno, Widjaja Moeljono, Ahmad Muhammad Imran

机构信息

Faculty of Engineering and Informatics, Universitas Multimedia Nusantara, Scientia Garden Jl. Boulevard Gading Serpong, Tangerang, ID.

Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Perlis, MY.

出版信息

JMIR Bioinform Biotechnol. 2025 Jun 20;6. doi: 10.2196/72423.

Abstract

BACKGROUND

Previous machine learning approaches for prostate cancer detection using gene expression data have shown remarkable classification accuracies. However, prior studies overlook the influence of racial diversity within the population and the importance of selecting outlier genes based on expression profiles.

OBJECTIVE

To develop a classification method for diagnosing prostate cancer using gene expression in specific populations.

METHODS

This research uses Differentially Expressed Gene (DEG) analysis, Receiver Operating Characteristic (ROC) analysis, and MSigDB verification as a feature selection framework to identify genes for constructing Support Vector Machine (SVM) models.

RESULTS

Among the models evaluated, the highest observed accuracy was achieved using 139 gene features without oversampling, resulting in 98% accuracy for white patients and 97% for African American patients, based on 388 training samples and 92 testing samples. Notably, another model achieved similarly strong performance 97% accuracy for white and 95% for African American patients while using only 9 gene features, trained on 374 samples and tested on 138 samples.

CONCLUSIONS

The findings identify a race-specific diagnosis method for prostate cancer detection using enhanced feature selection and machine learning. This approach emphasizes the potential for developing unbiased diagnostic tools in specific populations.

摘要

背景

先前使用基因表达数据进行前列腺癌检测的机器学习方法已显示出显著的分类准确率。然而,先前的研究忽略了人群中种族多样性的影响以及根据表达谱选择异常基因的重要性。

目的

开发一种利用特定人群中的基因表达来诊断前列腺癌的分类方法。

方法

本研究使用差异表达基因(DEG)分析、受试者工作特征(ROC)分析和MSigDB验证作为特征选择框架,以识别用于构建支持向量机(SVM)模型的基因。

结果

在评估的模型中,使用139个基因特征且不进行过采样时观察到的准确率最高,基于388个训练样本和92个测试样本,白人患者的准确率为98%,非裔美国患者的准确率为97%。值得注意的是,另一个模型在仅使用9个基因特征时也取得了类似的强劲性能,白人患者的准确率为97%,非裔美国患者的准确率为95%,该模型在374个样本上进行训练并在138个样本上进行测试。

结论

研究结果确定了一种使用增强特征选择和机器学习进行前列腺癌检测的种族特异性诊断方法。这种方法强调了在特定人群中开发无偏倚诊断工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e7/12314727/c7973a77a238/bioinform-v6-e72423-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验