Suppr超能文献

深度学习辅助 WT-GAN 从基因表达数据预测癌症疾病。

Deep learning assisted cancer disease prediction from gene expression data using WT-GAN.

机构信息

School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India.

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.

出版信息

BMC Med Inform Decis Mak. 2024 Oct 24;24(1):311. doi: 10.1186/s12911-024-02712-y.

Abstract

Several diverse fields including the healthcare system and drug development sectors have benefited immensely through the adoption of deep learning (DL), which is a subset of artificial intelligence (AI) and machine learning (ML). Cancer makes up a significant percentage of the illnesses that cause early human mortality across the globe, and this situation is likely to rise in the coming years, especially when non-communicable illnesses are not considered. As a result, cancer patients would greatly benefit from precise and timely diagnosis and prediction. Deep learning (DL) has become a common technique in healthcare due to the abundance of computational power. Gene expression datasets are frequently used in major DL-based applications for illness detection, notably in cancer therapy. The quantity of medical data, on the other hand, is often insufficient to fulfill deep learning requirements. Microarray gene expression datasets are used for training procedures despite their extreme dimensionality, limited volume of data samples, and sparsely available information. Data augmentation is commonly used to expand the training sample size for gene data. The Wasserstein Tabular Generative Adversarial Network (WT-GAN) model is used for the data augmentation process for generating synthetic data in this proposed work. The correlation-based feature selection technique selects the most relevant characteristics based on threshold values. Deep FNN and ML algorithms train and classify the gene expression samples. The augmented data give better classification results (> 97%) when using WT-GAN for cancer diagnosis.

摘要

深度学习(DL)是人工智能(AI)和机器学习(ML)的一个子集,它已经使医疗保健系统和药物开发等多个领域受益匪浅。癌症在全球范围内导致人类早期死亡的疾病中占很大比例,而且这种情况在未来几年可能会上升,特别是在不考虑非传染性疾病的情况下。因此,癌症患者将从精确和及时的诊断和预测中受益匪浅。由于计算能力的提高,深度学习(DL)已成为医疗保健中的一种常见技术。基因表达数据集常用于基于 DL 的主要应用程序中的疾病检测,特别是在癌症治疗中。另一方面,医疗数据的数量通常不足以满足深度学习的要求。尽管微阵列基因表达数据集具有极高的维度、有限的数据样本量和稀疏的可用信息,但仍可用于训练过程。数据扩充通常用于扩展基因数据的训练样本大小。在这项工作中,Wasserstein 表格生成对抗网络(WT-GAN)模型用于数据扩充过程,以生成合成数据。基于相关性的特征选择技术根据阈值选择最相关的特征。深度 FNN 和 ML 算法对基因表达样本进行训练和分类。使用 WT-GAN 进行癌症诊断时,扩充数据的分类结果更好(>97%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4434/11515488/04ea788a6ba6/12911_2024_2712_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验