Suppr超能文献

量子处理器上大型多体哈密顿量的 Krylov 对角化

Krylov diagonalization of large many-body Hamiltonians on a quantum processor.

作者信息

Yoshioka Nobuyuki, Amico Mirko, Kirby William, Jurcevic Petar, Dutt Arkopal, Fuller Bryce, Garion Shelly, Haas Holger, Hamamura Ikko, Ivrii Alexander, Majumdar Ritajit, Minev Zlatko, Motta Mario, Pokharel Bibek, Rivero Pedro, Sharma Kunal, Wood Christopher J, Javadi-Abhari Ali, Mezzacapo Antonio

机构信息

Department of Applied Physics, University of Tokyo, Bunkyo-ku, Japan.

International Center for Elementary Particle Physics, University of Tokyo, Bunkyo-ku, Japan.

出版信息

Nat Commun. 2025 Jun 24;16(1):5014. doi: 10.1038/s41467-025-59716-z.

Abstract

The estimation of low energies of many-body systems is a cornerstone of the computational quantum sciences. Variational quantum algorithms can be used to prepare ground states on pre-fault-tolerant quantum processors, but their lack of convergence guarantees and impractical number of cost function estimations prevent systematic scaling of experiments to large systems. Alternatives to variational approaches are needed for large-scale experiments on pre-fault-tolerant devices. Here, we use a superconducting quantum processor to compute eigenenergies of quantum many-body systems on two-dimensional lattices of up to 56 sites, using the Krylov quantum diagonalization algorithm, an analog of the well-known classical diagonalization technique. We construct subspaces of the many-body Hilbert space using Trotterized unitary evolutions executed on the quantum processor, and classically diagonalize many-body interacting Hamiltonians within those subspaces. These experiments demonstrate exponential convergence towards an estimate of the ground state energy, and show that quantum diagonalization algorithms are poised to complement their classical counterparts at the foundation of computational methods for quantum systems.

摘要

多体系统低能量的估计是计算量子科学的基石。变分量子算法可用于在容错前量子处理器上制备基态,但其缺乏收敛保证以及成本函数估计数量不切实际,阻碍了实验向大型系统的系统扩展。对于容错前设备上的大规模实验,需要变分方法的替代方案。在这里,我们使用超导量子处理器,通过Krylov量子对角化算法(一种著名经典对角化技术的类似物)来计算多达56个格点的二维晶格上量子多体系统的本征能量。我们使用在量子处理器上执行的Trotter化酉演化来构建多体希尔伯特空间的子空间,并在这些子空间内对多体相互作用哈密顿量进行经典对角化。这些实验证明了朝着基态能量估计的指数收敛,并表明量子对角化算法有望在量子系统计算方法的基础上补充其经典对应算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a1/12187927/22e70496c8a8/41467_2025_59716_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验