Slumstrup Laura, Thrower John D, Schrauwen Johanna G M, Lamberts Thanja, Ingman Emily R, Laurinavicius Domantas, DeVine Jessalyn, Terwisscha van Scheltinga Jeroen, Santos Julia C, Noble Jennifer A, Wenzel Gabi, McCoustra Martin R S, Brown Wendy A, Linnartz Harold, Hornekær Liv, Cuppen Herma M, Redlich Britta, Ioppolo Sergio
Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
HFML-FELIX Laboratory, Radboud University, 6525 ED Nijmegen, The Netherlands.
ACS Earth Space Chem. 2025 May 22;9(6):1607-1621. doi: 10.1021/acsearthspacechem.5c00040. eCollection 2025 Jun 19.
Carbon monoxide (CO) is a key component of the icy mantles that form on the surfaces of dust grains in the interstellar medium. In dense molecular clouds, where grain temperatures are around 10 K, CO freezes out as a nonpolar layer on top of HO ice. This CO plays an important role in the formation of complex organic molecules (COMs) through reactions with hydrogen atoms. Interstellar grains are also exposed to photons and charged particles that can both drive chemical reactions and promote desorption of molecules, providing an important link between the solid state reservoir of molecules and the gas phase. While several studies have considered UV photon driven desorption mechanisms, the UV component of the interstellar radiation field is strongly attenuated within dense clouds, with the internal cloud field being dominated by IR photons. We have used the FELIX IR Free Electron Laser (FEL) FEL-2 to irradiate a few monolayer film of CO deposited on the top of amorphous solid water (ASW) and compared the CO desorption yields to those obtained for a pure CO film. Infrared spectroscopy, combined with mass spectrometric detection of desorbing CO molecules, reveals that excitation of vibrational modes in the underlying ASW leads to significant CO desorption. This is in contrast to direct excitation of the stretching mode of CO which results in only inefficient desorption. The desorption efficiencies we derive indicate that energy transfer within ices on interstellar grains might provide an important route to IR photon-induced desorption of volatile species, such as CO.
一氧化碳(CO)是星际介质中尘埃颗粒表面形成的冰质幔层的关键成分。在致密分子云中,颗粒温度约为10K,CO会作为非极性层冻结在HO冰之上。这种CO通过与氢原子反应在复杂有机分子(COM)的形成中发挥重要作用。星际颗粒还会受到光子和带电粒子的作用,它们既能驱动化学反应,又能促进分子解吸,在分子的固态储存库和气相之间提供了重要联系。虽然已有多项研究考虑了紫外光子驱动的解吸机制,但星际辐射场的紫外成分在致密云内部会被强烈衰减,云内部场主要由红外光子主导。我们利用费利克斯红外自由电子激光(FEL)FEL-2照射沉积在非晶态固态水(ASW)顶部的几层CO薄膜,并将CO的解吸产率与纯CO薄膜的解吸产率进行比较。红外光谱结合对解吸CO分子的质谱检测表明,下层ASW中振动模式的激发会导致显著的CO解吸。这与直接激发CO的伸缩模式形成对比,后者只会导致低效解吸。我们得出的解吸效率表明,星际颗粒冰内的能量转移可能为红外光子诱导的挥发性物种(如CO)解吸提供一条重要途径。