Schrauwen Johanna G M, Dijkhuis Tobias M, Ioppolo Sergio, Galimberti Daria R, Redlich Britta, Cuppen Herma M
HFML-FELIX Laboratory, IMM, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
Institute of Molecules and Materials (IMM), Radboud University, 6525 ED Nijmegen, The Netherlands.
ACS Earth Space Chem. 2025 May 23;9(6):1580-1592. doi: 10.1021/acsearthspacechem.5c00030. eCollection 2025 Jun 19.
In interstellar ices, the ice matrix can have a great influence on the chemical reactions. The hydrogen-bonding network in pure water ices facilitates fast energy dissipation that, for example, stabilizes the HOCO complex, a crucial step in the formation of CO. To better understand the energy dynamics and its possible influence on the processes in the ice, we investigated a HO:CO 1:4 ice mixture exposed to infrared irradiation on-resonance with the CO vibrations. Experimentally, we find changes in the OH stretch of HO after irradiating the asymmetric stretch of CO for several minutes with the intense monochromatic light of the FELIX free electron lasers. Using molecular dynamics simulations, we found that an excitation of the asymmetric stretch of CO readily dissipates to other asymmetric stretches in the environment, but only dissipates to the CO libration and HO twist modes after roughly 2 ns because of its minimal anharmonicity and coupling with other modes. This is significantly longer than the off-time between laser pulses of 1 ns, suggesting ladder climbing or that the stacking of the excitation boosts the experimentally observed changes. For infrared excitation of the CO bending vibration, the simulations reveal a fast distribution of energy and coupling to the intermolecular interactions that lead to thermal heating of the HO vibrational modes. This is not observed on the time scale of the experiments. Still, both simulations and experiments reveal nonthermal annealing of the HO component of the mixed ice when exposed to infrared irradiation on-resonance with the CO vibrations.
在星际冰中,冰基质会对化学反应产生重大影响。纯水冰中的氢键网络有助于快速能量耗散,例如,这会稳定HOCO复合物,而HOCO复合物是CO形成过程中的关键一步。为了更好地理解能量动态及其对冰中过程可能产生的影响,我们研究了一种HO:CO 1:4的冰混合物,该混合物受到与CO振动共振的红外辐射。实验中,我们发现,在用FELIX自由电子激光器的强单色光照射CO的不对称伸缩振动几分钟后,HO的OH伸缩发生了变化。通过分子动力学模拟,我们发现CO不对称伸缩的激发很容易耗散到环境中的其他不对称伸缩,但由于其极小的非谐性以及与其他模式的耦合,大约2纳秒后才会耗散到CO的平动和HO的扭转模式。这明显长于1纳秒的激光脉冲间隔时间,这表明存在阶梯式攀升现象,或者说激发的叠加增强了实验观察到的变化。对于CO弯曲振动的红外激发,模拟结果显示能量快速分布并与分子间相互作用耦合,从而导致HO振动模式的热加热。在实验时间尺度上未观察到这种情况。尽管如此,模拟和实验都表明,当混合冰的HO组分受到与CO振动共振的红外辐射时,会发生非热退火现象。