Suppr超能文献

具有被动组件激活能力的自适应铁磁流体机器人系统。

Adaptive Ferrofluidic Robotic System with Passive Component Activation Capabilities.

作者信息

Chen Qinkai, Feng Haozhe, Fan Xinjian, Xie Hui, Sun Lining, Yang Zhan

机构信息

School of Future Science and Engineering, Soochow University, Suzhou 215222, China.

School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China.

出版信息

Cyborg Bionic Syst. 2025 Jun 24;6:0300. doi: 10.34133/cbsystems.0300. eCollection 2025.

Abstract

Soft robots demonstrate remarkable potential in medical applications owing to their minimally invasive nature, exceptional controllability, and shape-adaptive capabilities. However, existing control systems primarily rely on a single permanent magnet or electromagnetic coil for actuation, resulting in limited robotic motion capabilities, weak electromagnetic field gradient forces, and bulky magnetic drive systems. These constraints substantially hinder the robot's flexibility and functional expandability. To address these constraints, this study proposes a highly integrated hybrid electromagnetic coil permanent magnet actuation system. This innovative design enables actuation force amplification and synergistic regulation of locomotion, deformation, and orientation. Experimental validation confirms the broad operational capacity of the miniature ferrofluidic robot (MFR), including controllable motion-deformation coupling within multiscale luminal structures and active directional control in biomimetic gastric models. Leveraging the MFR's robust deformation and locomotion abilities, the empowerment mechanism for passive structures significantly enhanced compatibility with mechanical systems. Based on this mechanism, we achieved the transportation of larger-mass simulated drug particles by empowering passive delivery systems. To further validate the functionality of MFR, we developed an MFR-based capsule that achieves precise temporal and spatial control of drug release through experiments involving magnetothermal effect-accelerated release of simulated drugs and selective occlusion in simulated blood vessels. These advancements markedly enhanced the application potential of microrobots in complex and confined clinical environments.

摘要

软机器人由于其微创性、卓越的可控性和形状自适应能力,在医疗应用中展现出显著的潜力。然而,现有的控制系统主要依靠单个永磁体或电磁线圈进行驱动,导致机器人运动能力有限、电磁场梯度力较弱以及磁驱动系统体积庞大。这些限制极大地阻碍了机器人的灵活性和功能扩展性。为了解决这些限制,本研究提出了一种高度集成的混合电磁线圈永磁体驱动系统。这种创新设计能够实现驱动力放大以及对运动、变形和方向的协同调节。实验验证证实了微型铁磁流体机器人(MFR)具有广泛的操作能力,包括在多尺度管腔结构内可控的运动 - 变形耦合以及在仿生胃模型中的主动定向控制。利用MFR强大的变形和运动能力,被动结构的赋能机制显著增强了与机械系统的兼容性。基于这一机制,我们通过对被动输送系统进行赋能实现了更大质量模拟药物颗粒的运输。为了进一步验证MFR的功能,我们开发了一种基于MFR的胶囊,通过涉及模拟药物磁热效应加速释放和模拟血管选择性阻塞的实验,实现了药物释放的精确时空控制。这些进展显著增强了微型机器人在复杂和受限临床环境中的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f27e/12187217/0f70cb78830f/cbsystems.0300.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验