Durand Xavier, Hédou Julien, Bellan Grégoire, Thomas Pascal-Alexandre, Pages Pierre-Benoît, D'Journo Xavier-Benoît, Brouchet Laurent, Rivera Caroline, Falcoz Pierre-Emmanuel, Gillibert André, Baste Jean-Marc
From the SurgeCare, SAS, Department of Data Science, Paris, France.
Sorbonne Université, Inserm, UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
Ann Surg Open. 2025 May 27;6(2):e578. doi: 10.1097/AS9.0000000000000578. eCollection 2025 Jun.
To assess the predictive performance of Predicthor, an artificial intelligence model, for 30-day mortality and complications following major pulmonary resections.
The significance of predicting postoperative complications in thoracic surgery lies in the impact on patient outcomes and the efficient allocation of healthcare resources. The longstanding use of the Thoracoscore for over 15 years in hospital settings emphasizes the opportune moment for an update, leveraging new artificial intelligence methodologies to enhance predictive precision and relevance.
The EPITHOR French population-based database linked to the National Institute of Statistics and Economic Studies database has been queried from January 1, 2016, through December 31, 2022, on 6 selected hospital centers (Rouen, Dijon and Toulouse CHUs, Strasbourg CHRU, Centre Hospitalier Général de Bayonne, and Assitance Publique des Hopitaux de Marseille) with curated data collection. A total of 6508 patients who have undergone primary lung cancer surgery via lobectomy or bilobectomy, aged over 18 years, and with anAmerican Society of Anesthesiologists (ASA) physical status classification system score under 4, were selected. In a retrospective analysis using a 3-dataset scheme (training cohort, internal and external validation on 118 other centers), we assessed the predictive performance of Predicthor for 30-day complications and mortality following major pulmonary resections.
Postoperative complications occurred in 17.6% of patients, with 4.6% experiencing complications of Clavien-Dindo grade III or higher. Overall mortality was 0.6%. Predicthor excelled in predicting 30-day mortality with an area under the curve of 0.81 (95% CI = 0.79-0.83; < 1E-16), surpassing the Thoracoscore at 0.72 (95% CI = 0.70-0.75; < 1E-16). Predicthor identified 9 key variables, including age, comorbidity scores, tumor characteristics, forced expiratory volume (FEV1), and dyspnea. They were utilized for predicting Comprehensive Complication Index (Pearson-r: 0.23; 95% CI = 0.22-0.24; < 1E-16) and complications with Clavien-Dindo ≥III (area under the curve: 0.68; 95% CI = 0.68-0.69; < 1E-16).
Predicthor's predictive performance for 30-day mortality and complications highlighted its potential as a valuable tool in clinical decision-making. The study's methodology and comprehensive dataset contribute to its relevance in using machine learning on large available databases for shaping thoracic surgery practices and patient management.
评估人工智能模型Predicthor对肺大部切除术后30天死亡率和并发症的预测性能。
预测胸外科术后并发症的意义在于对患者预后的影响以及医疗资源的有效分配。Thoracoscore在医院环境中已长期使用超过15年,这凸显了利用新的人工智能方法来提高预测精度和相关性以进行更新的时机。
已查询了与法国国家统计与经济研究所数据库相关联的基于法国人群的EPITHOR数据库,时间跨度为2016年1月1日至2022年12月31日,涉及6个选定的医院中心(鲁昂、第戎和图卢兹大学医院、斯特拉斯堡大学医院、巴约讷综合医院以及马赛公立医院集团),并进行了精心的数据收集。总共选取了6508例接受过肺叶切除术或双叶切除术的原发性肺癌手术的患者,年龄超过18岁,且美国麻醉医师协会(ASA)身体状况分类系统评分低于4分。在一项使用三数据集方案(训练队列、在其他118个中心进行内部和外部验证)的回顾性分析中,我们评估了Predicthor对肺大部切除术后30天并发症和死亡率的预测性能。
17.6%的患者发生了术后并发症,其中4.6%经历了Clavien-DindoⅢ级或更高等级的并发症。总体死亡率为0.6%。Predicthor在预测30天死亡率方面表现出色,曲线下面积为0.81(95%置信区间 = 0.79 - 0.83;P < 1E - 16),超过了Thoracoscore的0.72(95%置信区间 = 0.70 - 0.75;P < 1E - 16)。Predicthor识别出9个关键变量,包括年龄、合并症评分、肿瘤特征、用力呼气量(FEV1)和呼吸困难。它们被用于预测综合并发症指数(Pearson相关系数:0.23;95%置信区间 = 0.22 - 0.24;P < 1E - 16)以及Clavien-Dindo≥Ⅲ级的并发症(曲线下面积:0.68;95%置信区间 = 0.68 - 0.69;P < 1E - 16)。
Predicthor对30天死亡率和并发症的预测性能凸显了其作为临床决策中有价值工具的潜力。该研究的方法和全面的数据集有助于其在利用大型可用数据库进行机器学习以塑造胸外科手术实践和患者管理方面的相关性。