Suppr超能文献

预测器:用于肺癌胸外科手术患者30天死亡率和30天并发症的人工智能预测风险模型。

Predicthor: AI-Powered Predictive Risk Model for 30-Day Mortality and 30-Day Complications in Patients Undergoing Thoracic Surgery for Lung Cancer.

作者信息

Durand Xavier, Hédou Julien, Bellan Grégoire, Thomas Pascal-Alexandre, Pages Pierre-Benoît, D'Journo Xavier-Benoît, Brouchet Laurent, Rivera Caroline, Falcoz Pierre-Emmanuel, Gillibert André, Baste Jean-Marc

机构信息

From the SurgeCare, SAS, Department of Data Science, Paris, France.

Sorbonne Université, Inserm, UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.

出版信息

Ann Surg Open. 2025 May 27;6(2):e578. doi: 10.1097/AS9.0000000000000578. eCollection 2025 Jun.

Abstract

OBJECTIVE

To assess the predictive performance of Predicthor, an artificial intelligence model, for 30-day mortality and complications following major pulmonary resections.

BACKGROUND

The significance of predicting postoperative complications in thoracic surgery lies in the impact on patient outcomes and the efficient allocation of healthcare resources. The longstanding use of the Thoracoscore for over 15 years in hospital settings emphasizes the opportune moment for an update, leveraging new artificial intelligence methodologies to enhance predictive precision and relevance.

METHODS

The EPITHOR French population-based database linked to the National Institute of Statistics and Economic Studies database has been queried from January 1, 2016, through December 31, 2022, on 6 selected hospital centers (Rouen, Dijon and Toulouse CHUs, Strasbourg CHRU, Centre Hospitalier Général de Bayonne, and Assitance Publique des Hopitaux de Marseille) with curated data collection. A total of 6508 patients who have undergone primary lung cancer surgery via lobectomy or bilobectomy, aged over 18 years, and with anAmerican Society of Anesthesiologists (ASA) physical status classification system score under 4, were selected. In a retrospective analysis using a 3-dataset scheme (training cohort, internal and external validation on 118 other centers), we assessed the predictive performance of Predicthor for 30-day complications and mortality following major pulmonary resections.

RESULTS

Postoperative complications occurred in 17.6% of patients, with 4.6% experiencing complications of Clavien-Dindo grade III or higher. Overall mortality was 0.6%. Predicthor excelled in predicting 30-day mortality with an area under the curve of 0.81 (95% CI = 0.79-0.83; < 1E-16), surpassing the Thoracoscore at 0.72 (95% CI = 0.70-0.75; < 1E-16). Predicthor identified 9 key variables, including age, comorbidity scores, tumor characteristics, forced expiratory volume (FEV1), and dyspnea. They were utilized for predicting Comprehensive Complication Index (Pearson-r: 0.23; 95% CI = 0.22-0.24; < 1E-16) and complications with Clavien-Dindo ≥III (area under the curve: 0.68; 95% CI = 0.68-0.69; < 1E-16).

CONCLUSIONS

Predicthor's predictive performance for 30-day mortality and complications highlighted its potential as a valuable tool in clinical decision-making. The study's methodology and comprehensive dataset contribute to its relevance in using machine learning on large available databases for shaping thoracic surgery practices and patient management.

摘要

目的

评估人工智能模型Predicthor对肺大部切除术后30天死亡率和并发症的预测性能。

背景

预测胸外科术后并发症的意义在于对患者预后的影响以及医疗资源的有效分配。Thoracoscore在医院环境中已长期使用超过15年,这凸显了利用新的人工智能方法来提高预测精度和相关性以进行更新的时机。

方法

已查询了与法国国家统计与经济研究所数据库相关联的基于法国人群的EPITHOR数据库,时间跨度为2016年1月1日至2022年12月31日,涉及6个选定的医院中心(鲁昂、第戎和图卢兹大学医院、斯特拉斯堡大学医院、巴约讷综合医院以及马赛公立医院集团),并进行了精心的数据收集。总共选取了6508例接受过肺叶切除术或双叶切除术的原发性肺癌手术的患者,年龄超过18岁,且美国麻醉医师协会(ASA)身体状况分类系统评分低于4分。在一项使用三数据集方案(训练队列、在其他118个中心进行内部和外部验证)的回顾性分析中,我们评估了Predicthor对肺大部切除术后30天并发症和死亡率的预测性能。

结果

17.6%的患者发生了术后并发症,其中4.6%经历了Clavien-DindoⅢ级或更高等级的并发症。总体死亡率为0.6%。Predicthor在预测30天死亡率方面表现出色,曲线下面积为0.81(95%置信区间 = 0.79 - 0.83;P < 1E - 16),超过了Thoracoscore的0.72(95%置信区间 = 0.70 - 0.75;P < 1E - 16)。Predicthor识别出9个关键变量,包括年龄、合并症评分、肿瘤特征、用力呼气量(FEV1)和呼吸困难。它们被用于预测综合并发症指数(Pearson相关系数:0.23;95%置信区间 = 0.22 - 0.24;P < 1E - 16)以及Clavien-Dindo≥Ⅲ级的并发症(曲线下面积:0.68;95%置信区间 = 0.68 - 0.69;P < 1E - 16)。

结论

Predicthor对30天死亡率和并发症的预测性能凸显了其作为临床决策中有价值工具的潜力。该研究的方法和全面的数据集有助于其在利用大型可用数据库进行机器学习以塑造胸外科手术实践和患者管理方面的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d9a/12185074/4a26efbed115/as9-6-e578-g001.jpg

相似文献

2
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
3
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
8
Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults.
Cochrane Database Syst Rev. 2018 Jun 4;6(6):CD009642. doi: 10.1002/14651858.CD009642.pub3.
9
Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality.
Cochrane Database Syst Rev. 2022 Aug 3;8(8):CD013829. doi: 10.1002/14651858.CD013829.pub2.
10
SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19.
Cochrane Database Syst Rev. 2021 Sep 2;9(9):CD013825. doi: 10.1002/14651858.CD013825.pub2.

本文引用的文献

1
Discovery of sparse, reliable omic biomarkers with Stabl.
Nat Biotechnol. 2024 Oct;42(10):1581-1593. doi: 10.1038/s41587-023-02033-x. Epub 2024 Jan 2.
2
Analyzing the effect of data preprocessing techniques using machine learning algorithms on the diagnosis of COVID-19.
Concurr Comput. 2022 Dec 25;34(28):e7393. doi: 10.1002/cpe.7393. Epub 2022 Oct 18.
3
Predictive Analytics and Artificial Intelligence in Surgery-Opportunities and Risks.
JAMA Surg. 2023 Apr 1;158(4):337-338. doi: 10.1001/jamasurg.2022.5444.
6
The American College of Surgeons Surgical Risk Calculator performs well for pulmonary resection: A validation study.
J Thorac Cardiovasc Surg. 2022 Apr;163(4):1509-1516.e1. doi: 10.1016/j.jtcvs.2021.01.036. Epub 2021 Jan 21.
7
Preoperative assessment for minimally invasive lung surgery: Need an update?
Thorac Cancer. 2021 Jan;12(1):3-4. doi: 10.1111/1759-7714.13753. Epub 2020 Nov 19.
8
Artificial Intelligence and Surgical Decision-making.
JAMA Surg. 2020 Feb 1;155(2):148-158. doi: 10.1001/jamasurg.2019.4917.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验