Suppr超能文献

关节镜下肩袖修复术后康复的反向线性神经分期模型:一项叙述性综述

Reverse Linear Neuro Periodization Model for Rehabilitation After Arthroscopic Rotator Cuff Repair: A Narrative Review.

作者信息

Kakavas Georgios, Brilakis Emmanouil, Papatzikou Maria, Malliaropoulos Nikolaos, Mazeas Jean, Forelli Florian

机构信息

Fysiotek Spine & Sports Lab, 17562 Athens, Greece.

Brilakis Orthopaedics, 17561 Palaio Faliro, Greece.

出版信息

Clin Pract. 2025 May 30;15(6):105. doi: 10.3390/clinpract15060105.

Abstract

Periodization is a concept of systematic progression in training and rehabilitation. The rehabilitation literature, however, is scarce, with information about optimally designing resistance training programs based on periodization principles for injured athletes. This periodization model-reverse linear neuro periodization-is a model proposed for the long-term rehabilitation needed after an arthroscopic rotator cuff repair. With recent evidence supporting neural contributions to shoulder injuries and the rate of recovery, rehabilitation protocols may benefit from incorporating approaches that target the sensorimotor system. Integrating motor learning principles (external focus and differential learning) and new technologies (virtual reality, laser pointers, stroboscopic glasses) may bolster current shoulder rehabilitation protocols and improve patient recovery times and outcomes. Such an understanding allows well-informed sport rehabilitation specialists to better bridge the gap between the preparation for competition widely used by coaches and the treatment of injuries that may occur.

摘要

周期化是训练和康复中系统进展的一个概念。然而,康复文献却很匮乏,缺乏基于周期化原则为受伤运动员优化设计抗阻训练计划的相关信息。这种周期化模型——反向线性神经周期化——是为关节镜下肩袖修复术后所需的长期康复而提出的模型。鉴于最近有证据支持神经因素对肩部损伤及恢复速度的影响,康复方案可能会受益于纳入针对感觉运动系统的方法。整合运动学习原则(外部关注点和差异学习)以及新技术(虚拟现实、激光指示器、频闪眼镜)可能会加强当前的肩部康复方案,并改善患者的恢复时间和康复效果。这样的认识使见多识广的运动康复专家能够更好地弥合教练广泛采用的比赛准备与可能发生的损伤治疗之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/484f/12192029/501142f48a13/clinpract-15-00105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验