Suppr超能文献

通过使用脉冲中央模式发生器实现平稳过渡来增强有腿机器人的运动能力。

Enhancing Legged Robot Locomotion Through Smooth Transitions Using Spiking Central Pattern Generators.

作者信息

Rostro-Gonzalez Horacio, Guerra-Hernandez Erick I, Batres-Mendoza Patricia, Garcia-Granada Andres A, Cano-Lara Miroslava, Espinal Andres

机构信息

GEPI Research Group, IQS-School of Engineering, Ramon Llull University, Via Augusta 390, 08017 Barcelona, Spain.

Department of Electronics Engineering, DICIS-University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 kms, Salamanca 36885, Mexico.

出版信息

Biomimetics (Basel). 2025 Jun 7;10(6):381. doi: 10.3390/biomimetics10060381.

Abstract

In this work, we propose the integration of a mechanism to enable smooth transitions between different locomotion patterns in a hexapod robot. Specifically, we utilize a spiking neural network (SNN) functioning as a Central Pattern Generator (CPG) to generate three distinct locomotion patterns, or gaits: walk, jog, and run. This network produces coordinated spike trains, mimicking those generated in the brain, which are translated into synchronized robot movements via PWM signals. Subsequently, these spike trains are compared using a similarity metric known as SPIKE-synchronization to identify the optimal point for transitioning from one gait to another. This approach aims to achieve three main objectives: first, to maintain the robot's balance during transitions; second, to ensure that gait transitions are almost imperceptible; and third, to improve energy efficiency by reducing abrupt changes in the robot's actuators (servomotors). To validate our proposal, we incorporated FSR sensors on the robot's legs to detect the rigidity of the terrain it navigates. Based on the terrain's rigidity, the robot dynamically transitions between gaits. The system was tested in real time on a physical hexapod robot across four different types of terrain. Although the method was validated exclusively on a hexapod robot, it can be extended to any legged robot.

摘要

在这项工作中,我们提出集成一种机制,以使六足机器人能够在不同的运动模式之间实现平稳过渡。具体而言,我们利用一个作为中枢模式发生器(CPG)的脉冲神经网络(SNN)来生成三种不同的运动模式,即步态:行走、慢跑和奔跑。该网络产生协调的脉冲序列,模仿大脑中产生的脉冲序列,这些脉冲序列通过脉宽调制(PWM)信号转换为同步的机器人运动。随后,使用一种称为SPIKE同步的相似性度量对这些脉冲序列进行比较,以确定从一种步态过渡到另一种步态的最佳点。这种方法旨在实现三个主要目标:第一,在过渡过程中保持机器人的平衡;第二,确保步态过渡几乎难以察觉;第三,通过减少机器人执行器(伺服电机)的突然变化来提高能源效率。为了验证我们的提议,我们在机器人的腿部安装了力敏电阻(FSR)传感器,以检测其行驶地形的硬度。基于地形的硬度,机器人在步态之间动态过渡。该系统在一个物理六足机器人上针对四种不同类型的地形进行了实时测试。尽管该方法仅在六足机器人上得到了验证,但它可以扩展到任何有腿机器人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa04/12190837/83e0377e4765/biomimetics-10-00381-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验